...
首页> 外文期刊>Journal of Materials Chemistry, B. materials for biology and medicine >An efficient and recyclable enzyme catalytic system constructed through the synergy between biomimetic mineralization and polyamine-salt aggregate assembly
【24h】

An efficient and recyclable enzyme catalytic system constructed through the synergy between biomimetic mineralization and polyamine-salt aggregate assembly

机译:通过仿生矿化和多胺盐集料体之间的协同作用构建的高效可循环酶催化系统

获取原文
获取原文并翻译 | 示例

摘要

In the present study, an efficient and easily recyclable enzyme catalytic system based on nanoparticle-assembled microcapsules (NAMCs) is constructed by using both biomimetic mineralization and polyamine-salt aggregate assembly. Specifically, enzyme-encapsulated silica nanoparticles (NPs) are prepared by polyethyleneimine (PEI, a typical cationic polymer)-induced silicification in the presence of enzymes. The as-acquired NPs are then spontaneously adsorbed and assembled onto the surfaces of poly (allylamine hydrochloride) (PAH)-citrate microaggregates, which are synthesized through citrate-induced PAH aggregation. After continuous stirring, the internal parts of the PAH-citrate microaggregates are disassembled, and the NAMCs-based enzyme catalytic system is finally acquired. During the continuous stirring process, the PAH moieties on the surfaces of PAH-citrate microaggregates play two crucial roles: (1) adsorbing NPs onto the surfaces of PAH-citrate microaggregates by electrostatic interactions; and (2) catalyzing the subsequent condensation of the Si-OH groups on the surfaces of two adjacent NPs to form Si-O-Si networks, thus generating an intact capsule wall. In this process, the citrate moieties in the internal parts of PAH-citrate microaggregates are released into the bulk aqueous solution, and this release causes the disassembly of PAH-citrate microaggregates, thus generating the capsule lumen. The resultant enzyme catalytic system exhibits high activity and stability, and particularly, easy recyclability for converting formaldehyde into methanol using NADH as the cofactor. More specifically, this system displays an NADH conversion of ~92.7%, and can be nearly completely recycled using low-speed centrifugation (<3000 rpm), which ensures that the NADH conversion is maintained almost unaltered after reusing the system 10 times. This study will be useful for the facile construction of diverse catalytic systems with high efficiency and excellent recyclability.
机译:在本研究中,通过使用仿生矿化和聚胺盐集料体组装,构建了基于纳米颗粒组装的微胶囊(NAMC)的高效且易于回收的酶催化系统。具体而言,在酶的存在下,通过聚乙烯亚胺(PEI,一种典型的阳离子聚合物)诱导的硅化反应制备酶包封的二氧化硅纳米颗粒(NPs)。然后将所获得的NPs自发吸附并组装到聚(烯丙胺盐酸盐)(PAH)-柠檬酸盐微聚集体的表面上,该聚集体通过柠檬酸盐诱导的PAH聚集而合成。连续搅拌后,将PAH柠檬酸盐微聚集体的内部分解,最终获得基于NAMCs的酶催化体系。在连续搅拌过程中,柠檬酸PAH微团聚体表面上的PAH部分起两个关键作用:(1)通过静电相互作用将NPs吸附到柠檬酸PAH微团聚体表面上; (2)催化随后在两个相邻NP表面上的Si-OH基团缩合形成Si-O-Si网络,从而产生完整的胶囊壁。在该过程中,PAH-柠檬酸盐微聚集体内部的柠檬酸部分被释放到本体水溶液中,并且这种释放导致PAH-柠檬酸盐微聚集体的分解,从而产生胶囊内腔。所得的酶催化体系显示出高活性和稳定性,特别是使用NADH作为辅因子将甲醛转化为甲醇的容易回收利用。更具体地说,该系统显示出约92.7%的NADH转化率,并且可以通过低速离心(<3000 rpm)几乎完全回收利用,这确保了在重复使用系统10次后,NADH转化率几乎保持不变。这项研究将有助于轻松构建具有高效率和出色可回收性的各种催化体系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号