...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >NH3-assisted synthesis of microporous silicon oxycarbonitride ceramics from preceramic polymers: a combined N-2 and CO2 adsorption and small angle X-ray scattering study
【24h】

NH3-assisted synthesis of microporous silicon oxycarbonitride ceramics from preceramic polymers: a combined N-2 and CO2 adsorption and small angle X-ray scattering study

机译:NH3辅助从陶瓷前聚合物合成微孔氧碳氮化硅陶瓷:N-2和CO2的组合吸附和小角度X射线散射研究

获取原文
获取原文并翻译 | 示例

摘要

We have developed a simple and general synthesis strategy to tune the chemical composition and pore size as well as the surface area of microporous ceramics. This method is based on modifying the structure of preceramic polymers through chemical reactions with NH3 at 300-800 degrees C, followed by thermolysis under an Ar atmosphere at 750 degrees C. Under these synthesis conditions polysiloxane (SPR-212a, Starfire (R) Systems) and polysilazane (HTT-1800, KiON Specialty Polymers) transform to microporous ceramics, while materials derived from polycarbosilane (SMP-10, Starfire (R) Systems) remain non-porous, as revealed by N-2 and CO2 adsorption isotherms. Small angle X-ray scattering (SAXS) characterization indicates that samples prepared from polycarbosilane possess latent pores (pore size < 0.35 nm) which are not accessible in the gas adsorption experiments. The microporous silicon oxycarbonitride (SiCNO) ceramics synthesized from polysilazane and polysiloxane by the above-mentioned route possess a surface area and micropore volume of as high as 250-300 m(2) g(-1) and 0.16 cm(3) g(-1), respectively, as determined by the N-2 adsorption method. The analysis of CO2 adsorption isotherms by the Dubinin-Astakhov equation confirms a narrow pore size distribution in the ceramics derived from polysilazane. Our synthesis strategy provides tools to engineer the microstructure, that is the chemical structure and porosity, of microporous SiCNO ceramics for potential applications in the fields of catalysis, gas adsorption and gas separation.
机译:我们已经开发出一种简单而通用的合成策略,以调节微孔陶瓷的化学组成和孔径以及表面积。该方法的基础是通过在300-800摄氏度下与NH3进行化学反应,然后在750摄氏度的Ar气氛下热分解,来改变陶瓷前聚合物的结构。在这些合成条件下,聚硅氧烷(SPR-212a,Starfire(R)Systems )和聚硅氮烷(HTT-1800,KiON Specialty Polymers)转变为微孔陶瓷,而聚碳硅烷(SMP-10,Starfire(R)Systems)衍生的材料则保持无孔,如N-2和CO2吸附等温线所示。小角X射线散射(SAXS)表征表明,由聚碳硅烷制备的样品具有潜在的孔(孔径<0.35 nm),这些在气体吸附实验中是无法接近的。通过上述途径由聚硅氮烷和聚硅氧烷合成的微孔氧碳氮化硅(SiCNO)陶瓷的表面积和微孔体积分别高达250-300 m(2)g(-1)和0.16 cm(3)g( -1),分别由N-2吸附法确定。通过Dubinin-Astakhov方程对CO2吸附等温线的分析证实了聚硅氮烷衍生的陶瓷中的孔径分布窄。我们的合成策略为微孔SiCNO陶瓷的微观结构(即化学结构和孔隙率)的工程设计提供了工具,可用于催化,气体吸附和气体分离领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号