首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Design and preparation of highly structure-controllable mesoporous carbons at the molecular level and their application as electrode materials for supercapacitors
【24h】

Design and preparation of highly structure-controllable mesoporous carbons at the molecular level and their application as electrode materials for supercapacitors

机译:在分子水平上结构可控的介孔碳的设计与制备及其在超级电容器电极材料中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Highly structure-controllable mesoporous carbons (HSCMCs) were prepared through a simple carbonization procedure using well-controlled diblock copolymer precursors. We chose polyacrylonitrile-block-polymethylmethacrylate diblock copolymers as precursors, containing a source of carbon, i.e., polyacrylonitrile (PAN), and a sacrificial block, i.e., poly methyl methacrylate (PMMA). PAN-b- PMMA diblock copolymers were synthesized successfully by atom transfer radical polymerization (ATRP) in DMF at 90 degrees C with well-controlled molecular weight and narrow polydispersity. The as-synthesized PAN-b-PMMA diblock copolymers experienced a microphase-separation process to form a self-assembled nanostructure at 250 degrees C and then converted to a mesoporous carbon phase after carbonation at 800 degrees C. The mesoporous sizes of HSCMCs were increased with the increment of molecular weight of the sacrificial block (PMMA). In addition, the HSCMCs exhibited well-controlled mesoporous sizes of 5.96-17.42 nm and high specific surface areas of 427.6-213.1 m(2) g(-1). The well-controlled pore structure in such materials provided huge potential application as electrode materials for supercapacitors. In particular, HSCMC-5 with an optimal mesoporous size of 13.68 nm could achieve the highest specific capacitance of 254 F g(-1) at a current density of 0.5 A g(-1) in 2 M KOH aqueous electrolyte. Furthermore, it also possessed an excellent rate capability of 78% capacitance retention as the current density increased from 0.5 A g(-1) to 5 A g(-1) and a superior cycling performance of 96% capacitance retention after 10 000 cycles at a current density of 2 A g(-1). Besides, by precisely controlling the pore structure of HSCMCs, the mechanism of electric double layer capacitors could be investigated systematically.
机译:高度结构可控的介孔碳(HSCMC)是通过使用易于控制的二嵌段共聚物前体通过简单的碳化程序制备的。我们选择聚丙烯腈-嵌段-聚甲基丙烯酸甲酯二嵌段共聚物作为前体,其包含碳源,即聚丙烯腈(PAN)和牺牲嵌段,即聚甲基丙烯酸甲酯(PMMA)。 PAN-b-PMMA二嵌段共聚物是通过在90℃下以良好控制的分子量和窄的多分散性在DMF中进行原子转移自由基聚合(ATRP)成功合成的。合成后的PAN-b-PMMA二嵌段共聚物经历了微相分离过程,在250°C时形成自组装的纳米结构,然后在800°C碳化后转变为中孔碳相。HSMCC的中孔尺寸增加随牺牲嵌段(PMMA)分子量的增加而增加。此外,HSMCC表现出5.96-17.42 nm的良好控制的介孔尺寸和427.6-213.1 m(2)g(-1)的高比表面积。这种材料中良好控制的孔结构提供了巨大的潜力,可作为超级电容器的电极材料。特别是,具有最佳中孔尺寸13.68 nm的HSCMC-5在2 M KOH水性电解质中的电流密度为0.5 A g(-1)时可以达到254 F g(-1)的最高比电容。此外,当电流密度从0.5 A g(-1)增加到5 A g(-1)时,它还具有78%的电容保持率的出色的倍率能力,以及在10000次循环下的96%电容保持率的出色循环性能。 2 A g(-1)的电流密度。此外,通过精确控制HSMCC的孔结构,可以系统地研究双电层电容器的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号