首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Design of new anode materials based on hierarchical, three dimensional ordered macro-mesoporous TiO2 for high performance lithium ion batteries
【24h】

Design of new anode materials based on hierarchical, three dimensional ordered macro-mesoporous TiO2 for high performance lithium ion batteries

机译:基于分层,三维有序三元介孔TiO2的新型高性能锂离子电池负极材料设计

获取原文
获取原文并翻译 | 示例
           

摘要

As anode materials for lithium ion batteries, two three dimensionally ordered macroporous TiO2, one with disordered inter-particle mesopores formed by the aggregation of nanoparticles (3DOM) and another with inner-particle mesopores generated by a surfactant templating strategy (3DOMM), have been synthesized using poly(styrene-methyl methacrylate-3-sulfopropyl methacrylate potassium) (P(St-MMA-SPMAP)) spheres as a hard template and their electrochemical properties are compared, SEM and TEM observations reveal that both 3DOM TiO2 and 3DOMM TiO2 have well-ordered macropores and interconnected macropore walls with a regular periodicity. 3DOMM TiO2 demonstrates a specific surface area of 139 m~2 g~(-1) which is higher than that of 3DOM TiO2 (99 m~2 g~(-1)) due to the smaller crystallite size and inner-particle mesopores. The electrolyte adsorption results show that both 3DOM TiO2 and 3DOMM TiO2 have similar adsorption capacities despite a difference in the surface area. Electrochemical impendence spectroscopy analysis shows that 3DOMM TiO2 has a lower charge transfer resistance and faster Li~+ diffusion coefficient than 3DOM TiO2. Moreover, both 3DOM TiO2 and 3DOMM TiO2 possess excellent initial capacity of 248 mA h g~(-1) and 235 mA h g~(-1) at 0.2 C and 208 mA h g~(-1) and 202 mA h g~(-1) at 1 C, respectively. The reversibility study demonstrates that the 3DOMM TiO2 displays higher cycling capacity, superior rate behavior and higher Coulombic efficiency because the higher surface area provides more active sites and the presence of the inner-particle mesopores in the walls of macropores serve as a bicontinuous transport path and affords a shorter path length for diffusion of Li ions compared with the 3DOM TiO2 and its crystallite aggregated mesopores. The reversible capacity of 106 mA h g~(-1) observed for the 3DOMM TiO2 can be retained after 200 charge-discharge cycles at a relatively high current rate of 4 C. This cycle stability performance can be equally attributed to the crystallite size and inner-particle mesopores in the 3DOMM TiO2. Moreover, the existence of a bicontinuous porous structure in the 3DOMM TiO2 can further enhance the lithium insertion/extraction capacity at high rates. We believe that this study can shed light on the 3DOMM structure as a promising material for highly enhanced performance in lithium ion batteries.
机译:作为锂离子电池的负极材料,已经研究了两种三维有序的大孔TiO2,一种具有通过纳米颗粒(3DOM)的聚集形成的无序的颗粒间介孔,另一种具有通过表面活性剂模板化策略(3DOMM)生成的内部颗粒介孔。以聚苯乙烯-甲基丙烯酸甲酯-3-甲基丙烯酸磺丙酯钾(P(St-MMA-SPMAP))球为硬模板合成并比较了它们的电化学性能,SEM和TEM观察表明3DOM TiO2和3DOMM TiO2均具有有序的大孔和相互连接的大孔壁具有规则的周期性。 3DOMM TiO2的比表面积为139 m〜2 g〜(-1),比3DOM TiO2的比表面积(99 m〜2 g〜(-1))高,这是由于其晶粒尺寸较小和内部颗粒介孔较小。电解质的吸附结果表明,尽管表面积不同,但3DOM TiO2和3DOMM TiO2的吸附容量相似。电化学阻抗谱分析表明,3DOMM TiO2比3DOM TiO2具有更低的电荷转移电阻和更快的Li〜+扩散系数。此外,3DOM TiO2和3DOMM TiO2在0.2 C和208 mA hg〜(-1)和202 mA hg〜(-1)时均具有248 mA hg〜(-1)和235 mA hg〜(-1)的出色初始容量。 )分别在1 C下。可逆性研究表明,3DOMM TiO2显示出更高的循环容量,优异的速率行为和更高的库仑效率,这是因为较高的表面积提供了更多的活性位点,并且大孔壁中存在的内部颗粒中孔可作为双连续传输路径,并且与3DOM TiO2及其微晶聚集的中孔相比,锂离子的扩散路径更短。 3DOMM TiO2观察到的106 mA hg〜(-1)的可逆容量可以在200 C的较高电流速率下进行200次充放电后得以保持。这种循环稳定性能可以等同地归因于微晶尺寸和内部-3DOMM TiO2中的颗粒中孔。此外,在3DOMM TiO2中存在双连续多孔结构可以进一步提高锂的高插入/拔出能力。我们相信,这项研究可以阐明3DOMM结构,将其作为锂离子电池性能大幅提升的有前途的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号