首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Li4Ti5O_(12)-based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: a synergistic effect of doping, incorporating a conductive phase and reducing the particle size
【24h】

Li4Ti5O_(12)-based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: a synergistic effect of doping, incorporating a conductive phase and reducing the particle size

机译:具有低工作电位,高倍率能力和高可循环性的Li4Ti5O_(12)基负极材料,用于大功率锂离子电池:掺杂,掺入导电相并减小粒径的协同作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Doping, incorporating a conductive phase and reducing the particle size are three strategies for improving the rate capability of Li4Ti5O_(12) (LTO). Thus, the synergistic employment of these three strategies is expected to more efficiently improve the rate capability. To achieve this goal, Fe~(2+) doped LTO/multiwall carbon nanotube (MWCNT) composites were prepared by post-mixing MWCNTs with Fe~(2+) doped LTO particles from a solid-state reaction, while Cr~(3+) doped LTO/MWCNT composites were fabricated by a facile one-step solid-reaction using MWCNT premixing. Fe~(2+)/Cr~(3+) doping not only remarkably improves the electronic conductivity and Li~+ ion diffusion coefficient in LTO but also lowers its working potential. The carbon existed in the material fabrication processes leads to the reduction of the particle size. The introduction of MWCNTs in the Fe~(2+)/Cr~(3+) doped LTO/MWCNT composite significantly enhances the electrical conduction between Fe~(2+)/Cr~(3+) doped LTO particles. As a result of this novel synergistic strategy, performances of Li_(3.8)Fe_(0.3)Ti_(4.9)O_(12)/MWCNT and LiCrTiO4/MWCNT composites are comprehensively improved. The Li_(3.8)Fe_(0.3)Ti_(4.9)O_(12)/MWCNT composite shows a working potential of 8.9 mV lower than that of pristine LTO. At 10 C, its capacity is up to 106 mA h g~(-1) with an unexpected capacity retention of 117% after 200 cycles in a potential window of 1.0-2.5 V (vs. Li/Li~+). The corresponding values for LiCrTiO4/MWCNT composites are 46.2 mV, 120 mA h g~(-1) and 95.9%. In sharp contrast, the pristine counterpart shows a very disappointing capacity of only 11 mA h g~(-1) at 10 C. Therefore, the novel Li_(3.8)Fe_(0.3)Ti_(4.9)O_(12)/MWCNT and LiCrTiO4/MWCNT composites possess great potential for applications in high-power lithium-ion batteries.
机译:掺杂,掺入导电相并减小粒径是提高Li4Ti5O_(12)(LTO)倍率能力的三种策略。因此,这三种策略的协同使用有望更有效地提高费率能力。为了实现这一目标,通过将固态碳纳米管与固态掺杂的Fe〜(2+)掺杂的LTO颗粒进行后混合,然后将Cr〜(3)混合,从而制备了Fe〜(2+)掺杂的LTO /多壁碳纳米管(MWCNT)复合材料。 +)掺杂的LTO / MWCNT复合材料是通过使用MWCNT预混合的便捷的一步固相反应制备的。 Fe〜(2 +)/ Cr〜(3+)掺杂不仅显着提高了LTO中的电子电导率和Li〜+离子扩散系数,而且降低了其工作电位。材料制造过程中存在的碳导致粒径减小。在掺杂了Fe〜(2 +)/ Cr〜(3+)的LTO / MWCNT复合材料中引入了碳纳米管,大大增强了掺杂Fe〜(2 +)/ Cr〜(3+)的LTO颗粒之间的导电性。由于这种新颖的协同策略,全面改善了Li_(3.8)Fe_(0.3)Ti_(4.9)O_(12)/ MWCNT和LiCrTiO4 / MWCNT复合材料的性能。 Li_(3.8)Fe_(0.3)Ti_(4.9)O_(12)/ MWCNT复合材料的工作电势比原始LTO低8.9 mV。在10 C下,其容量高达106 mA h g〜(-1),在1.0-2.5 V(vs. Li / Li〜+)的电势窗口中经过200个循环后,其意外的容量保持率为117%。 LiCrTiO4 / MWCNT复合材料的相应值为46.2 mV,120 mA h g〜(-1)和95.9%。与之形成鲜明对比的是,原始的对应物在10 C时的容量只有11 mA hg〜(-1),非常令人失望。因此,新型的Li_(3.8)Fe_(0.3)Ti_(4.9)O_(12)/ MWCNT和LiCrTiO4 / MWCNT复合材料在大功率锂离子电池中具有巨大的应用潜力。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号