...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Artificially engineered, bicontinuous anion-conducting/-repelling polymeric phases as a selective ion transport channel for rechargeable zinc-air battery separator membranes
【24h】

Artificially engineered, bicontinuous anion-conducting/-repelling polymeric phases as a selective ion transport channel for rechargeable zinc-air battery separator membranes

机译:人工设计的双连续阴离子传导/排斥聚合物相,作为可充电锌-空气电池隔膜的选择性离子传输通道

获取原文
获取原文并翻译 | 示例
           

摘要

Zinc (Zn)-air batteries have recently attracted a great deal of attention as a promising energy storage system to fulfill our ever-increasing demand for higher energy density power sources. Despite commercial success of primary Zn-air batteries, performances of rechargeable Zn-air batteries are still far below practically satisfactory levels. Among critical challenges facing the electrochemical rechargeability, the crossover of zincate (Zn(OH)(4)(2-)) ions from the Zn anode to the air cathode (via separator membranes) is a formidable bottleneck. Here, as a facile and scalable polymer architecture strategy to address this ion transport issue, we demonstrate a new class of polymer blend electrolyte membranes with artificially engineered, bicontinuous anion-conducting/-repelling phases (referred to as "PBE membranes"). As an anion-conducting continuous phase, an electrospun polyvinyl alcohol (PVA)/polyacrylic acid (PAA) nanofiber mat is fabricated. Into the PVA/PAA nanofiber mat, Nafion bearing pendant sulfonate groups is impregnated to form an anion-repelling continuous phase. Such bicontinuous phase-mediated structural uniqueness enables the PBE membrane to act as a selective ion transport channel, i.e., effectively suppresses Zn(OH)(4)(2-) crossover (by a continuous Nafion phase offering the Donnan exclusion effect) with slightly impairing OH- conduction (predominantly through the PVA/PAA nanofiber mat), eventually improving the cycling stability (cycle time = over 2500 min for the PBE membrane vs. 900 min for a conventional polypropylene separator). The PBE membrane featuring the selective transport of OH- and Zn(OH)(4)(2-) ions is anticipated to pave a new route that leads us closer toward rechargeable Zn-air batteries.
机译:锌(Zn)空气电池作为一种有前途的储能系统已经引起了广泛的关注,可以满足我们对更高能量密度的电源不断增长的需求。尽管一次锌空气电池在商业上取得了成功,但可再充电锌空气电池的性能仍远远低于实际令人满意的水平。在电化学可充电性面临的关键挑战中,锌酸盐(Zn(OH)(4)(2-))离子从Zn阳极到空气阴极(通过隔膜)的交叉是一个巨大的瓶颈。在这里,作为解决此离子传输问题的便捷且可扩展的聚合物体系结构策略,我们展示了具有人工设计的双连续阴离子传导/排斥相的新型聚合物共混电解质膜(称为“ PBE膜”)。作为导电的连续相,制备了电纺聚乙烯醇(PVA)/聚丙烯酸(PAA)纳米纤维毡。将带有Nafion侧基磺酸盐基团的Nafion浸渍到PVA / PAA纳米纤维垫中,形成阴离子排斥的连续相。这种双连续相介导的结构独特性使PBE膜可以充当选择性离子传输通道,即有效抑制Zn(OH)(4)(2-)交叉(通过提供Donnan排斥作用的连续Nafion相),并且会影响OH传导(主要通过PVA / PAA纳米纤维垫),最终改善循环稳定性(循环时间= PBE膜超过2500分钟,而常规聚丙烯隔膜则超过900分钟)。 PBE膜具有选择性输送OH-和Zn(OH)(4)(2-)离子的特性,有望开辟一条新路线,使我们更接近可充电Zn-空气电池。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号