...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Significantly enhanced thermoelectric figure of merit of p-type Mg3Sb2-based Zintl phase compounds via nanostructuring and employing high energy mechanical milling coupled with spark plasma sintering
【24h】

Significantly enhanced thermoelectric figure of merit of p-type Mg3Sb2-based Zintl phase compounds via nanostructuring and employing high energy mechanical milling coupled with spark plasma sintering

机译:p型Mg3Sb2基Zintl相化合物的热电性能通过纳米结构和采用高能机械研磨与火花等离子体烧结相结合而显着提高

获取原文
获取原文并翻译 | 示例

摘要

Several nanostructuring methods have been demonstrated to produce a variety of nanostructured materials, and these methods are well recognized as effective paradigms for improving the performance of thermoelectric materials. Among the variety of nanostructured materials, bulk nanostructured materials have been shown to be the most promising because they not only have high ZT, but they can also be fabricated in large quantities, unlike many other nanostructured materials, making them desirable for large scale industrial application. In this study, the nanostructuring paradigm is extended for the first time to the bulk Mg3Sb2 and Mg3Sb1.8Bi0.2 Zintl phase compounds, which despite the advantages of price and abundance, so far have been disregarded for thermoelectric research due to low ZT relative to the available state-of-the-art thermoelectric materials. The nanostructuring of bulk Mg3Sb2 and Mg3Sb1.8Bi0.2, employing high energy ball milling followed by spark plasma sintering yields a ZT of similar to 0.4 and similar to 0.94 at 773 K, which are 54% and 56% higher values, respectively, than their respective bulk counterparts. The enhancement in the ZT of these materials is primarily due to the significant reduction in thermal conductivity caused by phonon scattering at numerous grain boundaries of nanostructured materials. The observed decrease in the thermal conductivity of these bulk nanostructured materials is quantified using a simple model that combines the macroscopic effective medium approach (EMA) with the concepts of Kapitza resistance. The microstructural investigation of these nanostructured materials was carried out employing high resolution transmission electron microscopy (HRTEM).
机译:已经证明了几种纳米结构化方法可以生产各种纳米结构材料,这些方法被公认为提高热电材料性能的有效范例。在各种纳米结构材料中,块状纳米结构材料已被证明是最有前途的,因为它们不仅具有很高的ZT值,而且还可以与许多其他纳米结构材料不同地进行大量制造,使其成为大规模工业应用的理想之选。 。在这项研究中,纳米结构范式首次扩展到了块状Mg3Sb2和Mg3Sb1.8Bi0.2 Zintl相化合物,尽管它们具有价格和丰度方面的优势,但由于相对于ZT较低的ZT,迄今为止尚未被用于热电研究。可用的最新热电材料。纳米结构的Mg3Sb2和Mg3Sb1.8Bi0.2的本体结构,采用高能球磨,然后进行火花等离子体烧结,在773 K时的ZT值接近0.4和0.94,分别比ZT高54%和56%。他们各自的大量对应物。这些材料的ZT的提高主要是由于在纳米结构材料的许多晶粒边界处的声子散射引起的热导率的显着降低。这些简单的模型结合了宏观有效介质方法(EMA)和Kapitza电阻的概念,对观察到的这些块状纳米结构材料的热导率下降进行了量化。这些纳米结构材料的微观结构研究是使用高分辨率透射电子显微镜(HRTEM)进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号