首页> 外文期刊>Journal of Molecular Evolution >Phylogenetic analysis of proteins associated in the four major energy metabolism systems: Photosynthesis, aerobic respiration, denitrification, and sulfur respiration
【24h】

Phylogenetic analysis of proteins associated in the four major energy metabolism systems: Photosynthesis, aerobic respiration, denitrification, and sulfur respiration

机译:系统发育分析涉及四个主要能量代谢系统的蛋白质:光合作用,有氧呼吸,反硝化和硫呼吸

获取原文
获取原文并翻译 | 示例
           

摘要

The four electron transfer energy metabolism systems, photosynthesis, aerobic respiration, denitrification, and sulfur respiration, are thought to be evolutionarily related because of the similarity of electron transfer patterns and the existence of some homologous proteins. How these systems have evolved is elusive. We therefore conducted a comprehensive homology search using PSI-BLAST, and phylogenetic analyses were conducted for the three homologous groups (groups 1-3) based on multiple alignments of domains defined in the Pfam database. There are five electron transfer types important for catalytic reaction in group 1, and many proteins bind molybdenum. Deletions of two domains led to loss of the function of binding molybdenum and ferredoxin, and these deletions seem to be critical for the electron transfer pattern changes in group 1. Two types of electron transfer were found in group 2, and all its member proteins bind siroheme and ferredoxin. Insertion of the pyridine nucleotide disulfide oxidoreductase domain seemed to be the critical point for the electron transfer pattern change in this group. The proteins belonging to group 3 are all flavin enzymes, and they bind flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN). Types of electron transfer in this group are divergent, but there are two common characteristics. NAD(P)H works as an electron donor or acceptor, and FAD or FMN transfers electrons from/to NAD(P)H. Electron transfer functions might be added to these common characteristics by the addition of functional domains through the evolution of group 3 proteins. Based on the phylogenetic analyses in this study and previous studies, we inferred the phylogeny of the energy metabolism systems as follows: photosynthesis (and possibly aerobic respiration) and the sulfuritrogen assimilation system first diverged, then the sulfuritrogen dissimilation system was produced from the latter system.
机译:由于电子转移模式的相似性和某些同源蛋白质的存在,人们认为四种电子转移能量代谢系统(光合作用,有氧呼吸,反硝化和硫呼吸)是进化相关的。这些系统如何演变还难以捉摸。因此,我们使用PSI-BLAST进行了全面的同源性搜索,并根据Pfam数据库中定义的域的多个比对对三个同源组(1-3组)进行了系统进化分析。在第1组中,有五种对于催化反应重要的电子转移类型,并且许多蛋白质与钼结合。两个结构域的缺失导致结合钼和铁氧还蛋白的功能丧失,这些缺失对于第1组的电子转移模式变化至关重要。在第2组中发现了两种类型的电子转移,其所有成员蛋白均结合西罗血红素和铁氧还蛋白。吡啶核苷酸二硫化物氧化还原酶结构域的插入似乎是该组中电子转移模式改变的关键点。属于第3组的蛋白质都是黄素酶,它们结合黄素腺嘌呤二核苷酸(FAD)或黄素单核苷酸(FMN)。该组中电子转移的类型是不同的,但是有两个共同的特征。 NAD(P)H用作电子供体或受体,FAD或FMN将电子从NAD(P)H转移到NAD(P)H。通过第3组蛋白质的进化添加功能域,可以将电子转移功能添加到这些共同特征中。根据本研究和先前研究的系统发育分析,我们推断能量代谢系统的系统发育如下:光合作用(以及可能的有氧呼吸)和硫/氮同化系统先分叉,然后产生硫/氮同化系统从后一个系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号