...
首页> 外文期刊>Journal of Molecular Biology >Enzyme/Non-enzyme Discrimination and Prediction of Enzyme Active Site Location Using Charge-based Methods.
【24h】

Enzyme/Non-enzyme Discrimination and Prediction of Enzyme Active Site Location Using Charge-based Methods.

机译:使用基于电荷的方法对酶/非酶的区分和酶活性位点的预测。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Calculations of charge interactions complement analysis of a characterised active site, rationalising pH-dependence of activity and transition state stabilisation. Prediction of active site location through large DeltapK(a)s or electrostatic strain is relevant for structural genomics. We report a study of ionisable groups in a set of 20 enzymes, finding that false positives obscure predictive potential. In a larger set of 156 enzymes, peaks in solvent-space electrostatic properties are calculated. Both electric field and potential match well to active site location. The best correlation is found with electrostatic potential calculated from uniform charge density over enzyme volume, rather than from assignment of a standard atom-specific charge set. Studying a shell around each molecule, for 77% of enzymes the potential peak is within that 5% of the shell closest to the active site centre, and 86% within 10%. Active site identification by largest cleft, also with projection onto a shell, gives 58% of enzymes for which the centre of the largest cleft lies within 5% of the active site, and 70% within 10%. Dielectric boundary conditions emphasise clefts in the uniform charge density method, which is suited to recognition of binding pockets embedded within larger clefts. The variation of peak potential with distance from active site, and comparison between enzyme and non-enzyme sets, gives an optimal threshold distinguishing enzyme from non-enzyme. We find that 87% of the enzyme set exceeds the threshold as compared to 29% of the non-enzyme set. Enzymeon-enzyme homologues, "structural genomics" annotated proteins and catalyticon-catalytic RNAs are studied in this context.
机译:电荷相互作用的计算补充了特征活性位点的分析,使活性的pH依赖性和过渡态稳定化变得合理。通过大DeltapK(a)或静电应变预测活动位点与结构基因组学有关。我们报告了一组20种酶中可电离基团的研究,发现假阳性掩盖了预测潜力。在更大的156种酶中,计算出溶剂空间静电特性的峰。电场和电势都与活动站点的位置非常匹配。最好的相关性是与根据酶体积上均匀的电荷密度而不是根据标准的原子特异性电荷集的分配计算出的静电势有关。研究每个分子周围的壳,对于77%的酶,潜在峰在最靠近活性位点中心的5%壳内,而在10%内的壳中占86%。通过最大裂口(也投影到贝壳上)进行的活动位点识别,给出了58%的酶,其中最大裂隙的中心位于活动位点的5%之内,而70%的酶在活动位点的5%之内。介电边界条件在均匀电荷密度法中强调了裂缝,这适用于识别嵌入较大裂缝中的结合口袋。峰电位随距活性位点的距离的变化以及酶和非酶组之间的比较,给出了区分酶与非酶的最佳阈值。我们发现,与非酶组的29%相比,酶组的87%超过了阈值。在这种情况下,研究了酶/非酶同源物,“结构基因组学”注释的蛋白质和催化/非催化RNA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号