首页> 外文期刊>Journal of Molecular Biology >Proton affinity changes driving unidirectional proton transport in the bacteriorhodopsin photocycle.
【24h】

Proton affinity changes driving unidirectional proton transport in the bacteriorhodopsin photocycle.

机译:质子亲和力的变化驱动细菌视紫红质光循环中的单向质子运输。

获取原文
获取原文并翻译 | 示例
           

摘要

Bacteriorhodopsin is the smallest autonomous light-driven proton pump. Proposals as to how it achieves the directionality of its trans-membrane proton transport fall into two categories: accessibility-switch models in which proton transfer pathways in different parts of the molecule are opened and closed during the photocycle, and affinity-switch models, which focus on changes in proton affinity of groups along the transport chain during the photocycle. Using newly available structural data, and adapting current methods of protein protonation-state prediction to the non-equilibrium case, we have calculated the relative free energies of protonation microstates of groups on the transport chain during key conformational states of the photocycle. Proton flow is modeled using accessibility limitations that do not change during the photocycle. The results show that changes in affinity (microstate energy) calculable from the structural models are sufficient to drive unidirectional proton transport without invoking an accessibility switch. Modeling studies for the N state relative to late M suggest that small structural re-arrangements in the cytoplasmic side may be enough to produce the crucial affinity change of Asp96 during N that allows it to participate in the reprotonation of the Schiff base from the cytoplasmic side. Methodologically, the work represents a conceptual advance compared to the usual calculations of pK(a) using macroscopic electrostatic models. We operate with collective states of protonation involving all key groups, rather than the individual-group pK(a) values traditionally used. When combined with state-to-state transition rules based on accessibility considerations, a model for non-equilibrium proton flow is obtained. Such methods should also be applicable to other active proton-transport systems.
机译:细菌视紫红质是最小的自主光驱动质子泵。关于它如何实现跨膜质子运输的方向性的提议分为两类:在光循环中打开和关闭分子不同部分中的质子传递途径的可及性转换模型,以及亲和力转换模型,着重研究光周期中沿运输链的各组质子亲和力的变化。使用新获得的结构数据,并使蛋白质质子化状态预测的当前方法适应非平衡情况,我们已经计算了光循环关键构象状态下运输链上各组质子化微状态的相对自由能。质子流是使用可访问性限制建模的,该限制在光周期中不会发生变化。结果表明,可从结构模型计算出的亲和力(微态能量)变化足以驱动单向质子传输,而无需调用可及性开关。关于N状态相对于晚期M的模型研究表明,胞质侧的小结构重新排列可能足以在N期间产生Asp96的关键亲和力变化,从而使其能够从胞质侧参与席夫碱的质子化。 。从方法上讲,与使用宏观静电模型对pK(a)的常规计算相比,这项工作代表了一种概念上的进步。我们在涉及所有关键组的质子化集体状态下操作,而不是传统上使用的单个组pK(a)值。当与基于可访问性考虑的状态到状态转换规则结合时,将获得非平衡质子流模型。此类方法也应适用于其他有源质子传输系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号