...
首页> 外文期刊>Journal of Molecular Biology >Insights into the catalytic mechanism of cofactor-independent phosphoglycerate mutase from X-ray crystallography, simulated dynamics and molecular modeling.
【24h】

Insights into the catalytic mechanism of cofactor-independent phosphoglycerate mutase from X-ray crystallography, simulated dynamics and molecular modeling.

机译:从X射线晶体学,模拟动力学和分子建模深入了解辅因子非依赖性磷酸甘油酸突变酶的催化机理。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Phosphoglycerate mutases catalyze the isomerization of 2 and 3-phosphoglycerates, and are essential for glucose metabolism in most organisms. Here, we further characterize the 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (iPGM) from Bacillus stearothermophilus by determination of a high-resolution (1.4A) crystal structure of the wild-type enzyme and the crystal structure of its S62A mutant. The mutant structure surprisingly showed the replacement of one of the two catalytically essential manganese ions with a water molecule, offering an additional possible explanation for its lack of catalytic activity. Crystal structures invariably show substrate phosphoglycerate to be entirely buried in a deep cleft between the two iPGM domains. Flexibility analyses were therefore employed to reveal the likely route of substrate access to the catalytic site through an aperture created in the enzyme's surface during certain stages of the catalytic process. Several conserved residues lining this aperturemay contribute to orientation of the substrate as it enters. Factors responsible for the retention of glycerate within the phosphoenzyme structure in the proposed mechanism are identified by molecular modeling of the glycerate complex of the phosphoenzyme. Taken together, these results allow for a better understanding of the mechanism of action of iPGMs. Many of the results are relevant to a series of evolutionarily related enzymes. These studies will facilitate the development of iPGM inhibitors which, due to the demonstrated importance of this enzyme in many bacteria, would be of great potential clinical significance.
机译:磷酸甘油酸突变酶催化2和3磷酸甘油酸酯的异构化,并且对于大多数生物体中的葡萄糖代谢至关重要。在这里,我们通过确定野生型酶的高分辨率(1.4A)晶体结构及其S62A突变体的晶体结构,进一步表征了嗜热脂肪芽孢杆菌的2,3-双磷酸甘油酸依赖性磷酸甘油酸突变酶(iPGM)。突变体结构出人意料地显示出用水分子取代了两个催化必需的锰离子之一,从而为其缺乏催化活性提供了另外的可能解释。晶体结构始终显示底物磷酸甘油酸酯被完全掩埋在两个iPGM域之间的深裂中。因此,采用灵活性分析来揭示底物通过在催化过程的某些阶段在酶表面形成的孔进入催化部位的可能途径。衬在该孔口上的几个保守残基可能会在基材进入时有助于基材的方向。通过对磷酸酶的甘油酸酯复合物进行分子建模,可以确定所提出机制中甘油酸酯保留在磷酸酶结构内的因素。综上所述,这些结果可以更好地理解iPGM的作用机理。许多结果与一系列进化相关的酶有关。这些研究将促进iPGM抑制剂的开发,由于该酶在许多细菌中的重要作用,因此具有很大的潜在临床意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号