首页> 外文期刊>Journal of molecular graphics & modelling >Secondary structure assignment for conformationally irregular peptides: Comparison between DSSP, STRIDE and KAKSI
【24h】

Secondary structure assignment for conformationally irregular peptides: Comparison between DSSP, STRIDE and KAKSI

机译:构象不规则肽的二级结构分配:DSSP,STRIDE和KAKSI之间的比较

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Secondary structure assignment codes were built to explore the regularities associated with the periodic motifs of proteins, such as those in backbone dihedral angles or in hydrogen bonds between backbone atoms. Precise structure assignment is challenging because real-life secondary structures are susceptible to bending, twist, fraying and other deformations that can distance them from their geometrical prototypes. Although results from codes such as DSSP and STRIDE converge in well-ordered structures, the agreement between the secondary structure assignments is known to deteriorate as the conformations become more distorted. Conformationally irregular peptides therefore offer a great opportunity to explore the differences between these codes. This is especially important for unfolded proteins and intrinsically disordered proteins, which are known to exhibit residual and/or transient secondary structure whose characterization is challenging. In this work, we have carried out Molecular Dynamics simulations of (relatively) disordered peptides, specifically gp41(659-671) (ELLELDKWASLWN), the homopeptide polyasparagine (N-18), and polyasparagine dimers. We have analyzed the resulting conformations with DSSP and STRIDE, based on hydrogen-bond patterns (and dihedral angles for STRIDE), and KAKSI, based on alpha-Carbon distances; and carefully characterized the differences in structural assignments. The full-sequence Segment Overlap (SOV) scores, that quantify the agreement between two secondary structure assignments, vary from 70% for gp41(659-671) (STRIDE as reference) to 49% for N-18 (DSSP as reference). Major differences are observed in turns, in the distinction between alpha and 3(10) helices, and in short parallel-sheet segments. (C) 2014 Elsevier Inc. All rights reserved.
机译:建立了二级结构分配代码,以探索与蛋白质周期性基序相关的规则性,例如主链二面角或主链原子之间的氢键中的规则性。精确的结构分配是具有挑战性的,因为现实生活中的二级结构易受弯曲,扭曲,磨损和其他变形的影响,从而使它们与几何原型相距甚远。尽管诸如DSSP和STRIDE之类的代码的结果收敛于井井有条的结构中,但是随着构象变得更加失真,二级结构分配之间的一致性会降低。因此,构象不规则的肽提供了探索这些密码之间差异的绝好机会。这对于未折叠的蛋白质和内在无序的蛋白质尤其重要,已知这些蛋白质表现出具有挑战性的残留和/或瞬时二级结构。在这项工作中,我们对(相对)无序的肽,特别是gp41(659-671)(ELLELDKWASLWN),同肽聚天冬酰胺(N-18)和聚天冬酰胺二聚体进行了分子动力学模拟。我们已经基于氢键图谱(和STRIDE的二面角)和DSK和Alpha-Carbon距离对KAKSI进行了分析,得出了DSSP和STRIDE的最终构象;并仔细描述结构分配上的差异。量化两个二级结构分配之间一致性的全序列片段重叠(SOV)分数,从gp41(659-671)的70%(以“ STRIDE”为参考)到N-18的49%(以DSSP为参考)不等。依次观察到主要区别,分别是alpha和3(10)螺旋之间的区别,以及较短的平行页片段。 (C)2014 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号