...
首页> 外文期刊>Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology >Sonochemical synthesis of nanostructured VOPO4 center dot 2H(2)O/carbon nanotube composites with improved lithium ion battery performance
【24h】

Sonochemical synthesis of nanostructured VOPO4 center dot 2H(2)O/carbon nanotube composites with improved lithium ion battery performance

机译:改进锂离子电池性能的纳米结构VOPO4中心点2H(2)O /碳纳米管复合材料的声化学合成

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Transition metal phosphates have become of great interest as cathode materials for lithium ion batteries because of their high voltage, low cost and environmental friendliness. However, their low-intrinsic conductivity presents a major drawback to practical implementation. Here, nanocrystallization of VOPO4 center dot 2H(2)O was first realized by a sonication-assisted intercalation-split mechanism in order to increase its diffusion coefficient and surface area contacting with electrolyte thus improving its capacity and cyclability; then nanocompounding of the above split nanocrystals and acid-functionalized multiwalled carbon nanotubes to form the resulting nanocomposites was successfully achieved by an adsorption-reintercalation mechanism to increase their conductivity thus enabling them to discharge at high rate with high efficiency. As expected, nanosized VOPO4 center dot 2H(2)O possesses longer discharge plateau (average discharge voltage: 3.7 V), higher capacity (93.4% of the theoretical capacity) and much better cyclability (retain 95.1% of the first discharge capacity after 50 cycles) than microsized VOPO4 center dot 2H(2)O. Furthermore, the relatively high-rate capability of the nanocomposites, retaining 83% of the first discharge capacity, is remarkably improved compared with VOPO4 center dot 2H(2)O microcrystals (retain only 31.7%). In brief, the use of nanocrystallization and nanocompounding techniques enables the high voltage, low cost, environmentally benign VOPO4 center dot 2H(2)O to show the prospective signs for the future practical applications.
机译:过渡金属磷酸盐由于其高电压,低成本和环境友好性,已成为锂离子电池正极材料备受关注。然而,它们的低本征电导率是实际应用的主要缺点。在这里,VOPO4中心点2H(2)O的纳米晶化首先是通过超声辅助插层分裂机制实现的,以增加其扩散系数和与电解质接触的表面积,从而提高其容量和循环性。然后通过吸附-重新嵌入机制增加其电导率,从而使其高效放电,从而成功地实现了上述分裂纳米晶体和酸官能化多壁碳纳米管的纳米复合,从而形成了最终的纳米复合材料。如预期的那样,纳米级VOPO4中心点2H(2)O具有更长的放电平稳期(平均放电电压:3.7 V),更高的容量(理论容量的93.4%)和更好的可循环性(在50后保持首次放电容量的95.1%)周期)比VOPO4中心点2H(2)O小。此外,与VOPO4中心点2H(2)O微晶相比(仅保留31.7%),保留了83%的第一放电容量的纳米复合材料的相对高倍率性能得到了显着提高。简而言之,使用纳米结晶和纳米复合技术可以使高电压,低成本,对环境无害的VOPO4中心点2H(2)O展现出未来实际应用的预期迹象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号