...
首页> 外文期刊>Journal of Molecular and Cellular Cardiology >Mechanism of the Frank-Starling law--a simulation study with a novel cardiac muscle contraction model that includes titin and troponin I.
【24h】

Mechanism of the Frank-Starling law--a simulation study with a novel cardiac muscle contraction model that includes titin and troponin I.

机译:弗兰克-史达琳定律的机理-使用新型心肌收缩模型的模拟研究,该模型包括titin和肌钙蛋白I.

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A stretch-induced increase of active tension is one of the most important properties of the heart, known as the Frank-Starling law. Although a variation of myofilament Ca(2+) sensitivity with sarcomere length (SL) change was found to be involved, the underlying molecular mechanisms are not fully clarified. Some recent experimental studies indicate that a reduction of the lattice spacing between thin and thick filaments, through the increase of passive tension caused by the sarcomeric protein titin with an increase in SL within the physiological range, promotes formation of force-generating crossbridges (Xbs). However, the mechanism by which the Xb concentration determines the degree of cooperativity for a given SL has so far evaded experimental elucidation. In this simulation study, a novel, rather simple molecular-based cardiac contraction model, appropriate for integration into a ventricular cell model, was designed, being the first model to introduce experimental data on titin-based radial tension to account for the SL-dependent modulation of the interfilament lattice spacing and to include a conformational change of troponin I (TnI). Simulation results for the isometric twitch contraction time course, the length-tension and the force-[Ca(2+)] relationships are comparable to experimental data. A complete potential Frank-Starling mechanism was analyzed by this simulation study. The SL-dependent modulation of the myosin binding rate through titin's passive tension determines the Xb concentration which then alters the degree of positive cooperativity affecting the rate of the TnI conformation change and causing the Hill coefficient to be SL-dependent.
机译:拉伸引起的主动张力增加是心脏最重要的特性之一,被称为弗兰克·史达琳定律。尽管发现肌丝Ca(2+)敏感性随肌节长度(SL)的变化而变化,但其潜在的分子机制尚未完全阐明。最近的一些实验研究表明,由于肌节蛋白滴定蛋白引起的被动张力的增加以及生理范围内SL的增加,细丝和粗丝之间的晶格间距的减小促进了力生成交叉桥(Xbs)的形成。 。但是,到目前为止,Xb浓度决定给定SL的协同程度的机制尚无法进行实验阐明。在该模拟研究中,设计了一种适用于整合到心室细胞模型中的新颖,简单的基于分子的心脏收缩模型,这是第一个引入基于钛蛋白的径向张力的实验数据以解释SL依赖性的模型。调节丝间晶格间距并包括肌钙蛋白I(TnI)的构象变化。等距抽搐收缩时间过程,长度-张力和力-[Ca(2+)]关系的仿真结果与实验数据相当。通过此模拟研究分析了完整的潜在Frank-Starling机制。通过titin的被动张力对肌球蛋白结合速率的SL依赖性调节决定了Xb浓度,Xb浓度随后改变了正协同作用的程度,影响了TnI构象变化的速率并导致Hill系数与SL有关。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号