首页> 外文期刊>Journal of Mechanical Science and Technology >Strain gradient plasticity based finite element analysis of ultra-fine wire drawing process
【24h】

Strain gradient plasticity based finite element analysis of ultra-fine wire drawing process

机译:基于应变梯度可塑性的超细拉丝过程有限元分析

获取原文
获取原文并翻译 | 示例
       

摘要

Steady-state rigid-plastic finite element analysis coupled with strain gradient plasticity theory has been performed to examine the size effect of material on its plastic deformation behavior and find an optimal semi-cone angle of die which minimizes the drawing energy in the ultra-fine wire drawing process. A stream-line tracing method was adopted to calculate strain component at each element and a strain surface function was introduced to compute the equivalent strain gradient of each element. Introduction of this function enables us to use an established FE code without renewal of its main structure. Hence, the constitutive equation in FE formulation is changed to couple the strain gradient plasticity. A series of FE simulation reveals that significant differences in drawing stress are observed when material size approaches its intrinsic material length. When the strain gradient plasticity theory is reflected on the steady-state FE analysis, the optimal semi-cone angle of the die is reduced by 30%. The variation of optimal semi-cone angle is attributable to considerable increment of homogeneous deformation when the material size reaches its intrinsic material length.
机译:进行了稳态刚塑性有限元分析和应变梯度可塑性理论的结合,以检查材料的尺寸对其塑性变形行为的影响,并找到最佳的模具半圆锥角,从而将超细粉末中的拉拔能量降至最低拉丝过程。采用流线追踪法计算每个单元的应变分量,引入应变面函数计算每个单元的等效应变梯度。引入此功能使我们能够使用已建立的FE代码,而无需更新其主要结构。因此,改变有限元公式中的本构方程以耦合应变梯度可塑性。一系列有限元模拟表明,当材料尺寸接近其固有材料长度时,可观察到拉拔应力的显着差异。当应变梯度可塑性理论反映在稳态有限元分析中时,模具的最佳半圆锥角减小了30%。当材料尺寸达到其固有材料长度时,最佳半圆锥角的变化可归因于均匀变形的显着增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号