首页> 外文期刊>Journal of Mathematical Biology >Molecule capture by olfactory antennules: Mantis shrimp
【24h】

Molecule capture by olfactory antennules: Mantis shrimp

机译:嗅球捕获分子:螳螂虾

获取原文
获取原文并翻译 | 示例
           

摘要

A critical step in the process of olfaction is the movement of odorant molecules from the environment to the surface of a chemosensory structure. Many marine crustaceans capture odorant molecules with arrays of chemosensory sensilla (aesthetases) on antennules that they flick through the water. We developed a model to calculate molecule flux to the surfaces of aesthetases in order to study how the size, aesthetase spacing, and flick kinematics of olfactory antennules affect their performance in capturing molecules from the surrounding water. Since the three-dimensional geometry of an aesthetase-bearing antennule is complex, dynamically-scaled physical models can often provide an efficient method of determining the fluid velocity field through the array. Here we present a method to optimize the incorporation of such measured velocity vector fields into a numerical simulation of the advection and diffusion of odorants to aesthetase surfaces. Furthermore, unlike earlier models of odorant interception by antennae, our model incorporates odorant concentration distributions that have been measured in turbulent ambient flows. By applying our model to the example of the olfactory antennules of mantis shrimp, we learned that flicking velocity can have profound effects on odorant flux to the aesthetases if they operate in the speed range in which the leakiness of the gaps between the aesthetases to fluid movement is sensitive to velocity. This sensitivity creates an asymmetry in molecule fluxes between outstroke and return stroke, which results in an antennule taking discrete samples in space and time, i.e. "sniffing". As stomatopods grow and their aesthetase Reynolds number increases, the aesthetase arrangement on the antennule changes in a way that maintains these asymmetries in leakiness and molecule flux between the outstroke and return stroke, allowing the individual to continue to take discrete samples as it develops. [References: 79]
机译:嗅觉过程中的关键步骤是将气味分子从环境移动到化学感应结构的表面。许多海洋甲壳类动物捕捉到的气味分子在其掠过水中的触角上都带有化学感应的感觉(麻醉剂)。我们开发了一个模型来计算分子向麻醉剂表面的通量,以研究嗅觉触角的大小,麻醉剂间距和轻弹运动学如何影响其从周围水中捕获分子的性能。由于带有麻醉剂的触角的三维几何形状很复杂,因此动态缩放的物理模型通常可以提供确定通过阵列的流体速度场的有效方法。在这里,我们提出了一种优化方法,将这种测得的速度矢量场并入到对流和扩散到麻醉剂表面的气味扩散的数值模拟中。此外,与较早的通过天线拦截气味的模型不同,我们的模型包含了在湍流环境流量中测量的气味浓度分布。通过将我们的模型应用于螳螂虾嗅觉触角的示例,我们了解到,如果甩脂速度在麻醉剂之间的缝隙渗漏到流体运动的速度范围内运行,则它们可以对麻醉剂的气味通量产生深远的影响。对速度敏感。这种敏感性在外伸冲程和返回冲程之间的分子通量中产生不对称性,从而导致在空间和时间上离散的样品即“嗅探”的触角。随着气孔足的生长和其麻醉酶雷诺数的增加,在触角上的麻醉酶排列方式会发生变化,以保持这些不对称性以及在中风和返程之间的分子通量,从而使个体能够在发展过程中继续采集离散的样本。 [参考:79]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号