...
首页> 外文期刊>Journal of Mathematical Biology >Irreversible prey diapause as an optimal strategy of a physiologically extended Lotka-Volterra model
【24h】

Irreversible prey diapause as an optimal strategy of a physiologically extended Lotka-Volterra model

机译:不可逆的猎物滞育作为生理扩展Lotka-Volterra模型的最佳策略

获取原文
获取原文并翻译 | 示例

摘要

We propose an optimal control framework to describe intra-seasonal predator-prey interactions, which are characterized by a continuous-time dynamical model comprising predator and prey density, as well as the energy budget of the prey over the length of a season. The model includes a time-dependent decision variable for the prey, representing the portion of the prey population in time that is active, as opposed to diapausing (a state of physiological rest). The predator follows autonomous dynamics and accordingly it remains active during the season. The proposed model is a generalization of the classical Lotka-Volterra predator-prey model towards non-autonomous dynamics that furthermore includes the effect of an energy variable. The model has been inspired by a specific biological system of predatory mites (Acari: Phytoseiidae) and prey mites (so-called fruit-tree red spider mites) (Acari: Tetranychidae) that feed on leaves of apple trees-its parameters have been instantiated based on laboratory and field studies. The goal of the work is to understand the decisions of the prey mites to enter diapause (a state of physiological rest) given the dynamics of the predatory mites: this is achieved by solving an optimization problem hinging on the maximization of the prey population contribution to the next season. The main features of the optimal strategy for the prey are shown to be that (1) once in diapause, the prey does not become active again within the same season and hence diapause is an irreversible process; (2) for the vast majority of parameter space, the portion of prey individuals entering diapause within the season does not decrease in time; (3) with an increased number of predators, the optimal population strategy for the prey is to start diapause earlier and to enter diapause more gradually. This optimal population strategy will be studied for its ESS properties in a sequel to the work presented in this article.
机译:我们提出了一个描述季节内捕食者与猎物之间相互作用的最优控制框架,其特征在于包括捕食者和猎物密度的连续时间动力学模型,以及整个季节内猎物的能量预算。该模型包括一个与时间有关的决策变量,代表与活动滞育(生理静止状态)相对的活动时间中的活动种群。捕食者遵循自主动态,因此在整个季节中仍保持活跃。提出的模型是经典Lotka-Volterra捕食者-猎物模型向非自治动力学的概括,该模型还包括能量变量的影响。该模型的灵感来自于以苹果树的叶子为食的掠食性螨(Acari:Phytoseiidae)和猎物螨(所谓的果树红蜘蛛)(Acari:Tetranychidae)的特定生物系统,其参数已实例化基于实验室和现场研究。这项工作的目的是在给定捕食性螨虫动态的情况下,了解捕食性螨进入滞育(生理休息状态)的决定:这是通过解决依赖于最大化捕食性种群贡献的优化问题来实现的。下个赛季。捕食者最佳策略的主要特征是:(1)滞育后,猎物在同一季节不再活跃,因此滞育是不可逆的过程; (2)对于绝大多数参数空间,在季节内进入滞育状态的猎物个体的时间不会减少; (3)随着捕食者数量的增加,捕食者的最佳种群策略是更早开始滞育并逐渐进入滞育。将在本文介绍的工作的续篇中研究这种最优的人口策略的ESS属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号