首页> 外文期刊>Journal of marine systems: journal of the European Association of Marine Sciences and Techniques >Analyses of intermittent mixing and stratification within the North Passage of the Changjiang (Yangtze) River estuary, China: A three-dimensional model study
【24h】

Analyses of intermittent mixing and stratification within the North Passage of the Changjiang (Yangtze) River estuary, China: A three-dimensional model study

机译:长江河口北通道断续混合分层的三维模型研究

获取原文
获取原文并翻译 | 示例
           

摘要

The TELEMAC-3D, incorporating a stability function, and the potential energy anomaly equation (phi-equation), are used to analyze neap-spring tidal and intratidal variability of intermittent mixing and stratification within the North Passage of the Changjiang (Yangtze) River estuary in the wet season. Eight terms in the phi-equation are used to examine physical mechanisms and the relative importance of each term for the lower reach of the North Passage. As revealed by the gradient Richardson number (Ri), the Simpson number (Si) and the potential energy anomaly (phi), weak mixing and persistent stratification appear on a neap tide, while strong mixing and periodic stratification on a spring tide within the main channel in the middle and lower reaches of the North Passage. The landward subtidal flow is much stronger on a neap tide than that on a spring tide. Within the main channel in the lower reach, large magnitude of longitudinal phi-advection (A(u)) reflects the important effect of saltwedge movement on stratification. Large magnitude of lateral phi-advection (A(v)) may be enhanced by large lateral gradient of phi due to the complex bathymetry and artificial structures. Both longitudinal (A(u)) and lateral phi-advections (A(v)) are temporally and spatially intermittent Large longitudinal depth-mean straining (B-u) overlays the combined effect of tidal straining, circulation and river discharge. Large lateral depth-mean straining (B-v) is generated by large lateral density gradient interacting with the shear flow. The magnitude of integrated vertical turbulent buoyancy flux (E) mainly depends on tidal stirring at the bottom, while wind stirring at the surface and shear instability at the pycnocline are secondary contributors. The magnitudes of the other physical mechanisms including longitudinal non-mean straining (C-u), lateral non-mean straining (C-v) and vertical advection (D) are relatively smaller than those above. Neap-spring tidal variability of mixing and stratification mainly results from combined effect of three principal physical mechanisms, i.e. tidal stirring, longitudinal (Bu) and lateral depth-mean strainings (B-v). Intratidal variability of mixing and stratification is apparent on a spring tide. It seems that Advection, Straining and Stirring Induced Periodic Stratification (ASSIPS), rather than Advection and Straining Induced Periodic Stratification (ASIPS) and Straining Induced Periodic Stratification (SIPS), controls intratidal variability of mixing and stratification within the North Passage. (C) 2016 Elsevier B.V. All rights reserved.
机译:TELEMAC-3D结合了稳定函数和势能异常方程(phi方程),用于分析长江(长江)河口北通道内间歇性混合和分层的泉水潮汐和潮汐内变异性。在雨季。 phi方程中的八个术语用于检查物理机制以及每个术语对于北通道下部的相对重要性。正如梯度理查森数(Ri),辛普森数(Si)和势能异常(phi)所揭示的那样,在新生潮中出现弱混合和持续分层,而在主潮汐中出现强混合和周期性分层。通道位于北通道的中下游。在潮汐潮中,陆上潮汐流要比在春季潮汐时强得多。在下游的主要航道内,较大的纵向φ平流(A(u))反映了盐楔运动对分层的重要影响。由于复杂的测深和人工构造,较大的横向phi对流(A(v))可能会由于phi的较大的横向坡度而增强。纵向(A(u))和横向phi-对流(A(v))在时间和空间上都是间歇性的。大的纵向深度均值应变(B-u)叠加了潮汐应变,环流和河流排泄的综合作用。较大的横向深度均值应变(B-v)是由较大的横向密度梯度与剪切流相互作用而产生的。整体垂直湍流浮力通量(E)的大小主要取决于底部的潮汐搅动,而表面的风搅动和比多可克林的剪切不稳定性是次要因素。包括纵向非均值应变(C-u),横向非均值应变(C-v)和垂直对流(D)在内的其他物理机制的大小都比上面的小。潮气混合和分层的潮汐变异性主要是由三个主要物理机理的共同作用所致,即潮汐搅拌,纵向(Bu)和横向深度均值应变(B-v)。在春季潮汐中,混合和分层的潮间变化是显而易见的。似乎平流,应变和搅拌引起的周期性分层(ASSIPS)而非平流和应变引起的周期性分层(ASIPS)和应变引起的周期性分层(SIPS)来控制北通道内潮汐的混合和分层变化。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号