...
首页> 外文期刊>Journal of Materials Science >Dynamic behavior of SUS304 stainless steel at elevated temperatures
【24h】

Dynamic behavior of SUS304 stainless steel at elevated temperatures

机译:SUS304不锈钢在高温下的动态行为

获取原文
获取原文并翻译 | 示例

摘要

An elevated temperature tensile impact experimental technique has been developed, using the rotating disk indirect bar-bar tensile impact apparatus with elevated temperature furnaces. Temperatures up to 800degreesC in the specimen have been obtained by means of rapid contact heating.Tensile impact experiments have been performed to investigate the mechanical behavior of SUS304 stainless steel in the temperature range 25-537degreesC. In contrast, the quasi-static tensions were conducted on MTS810 at three temperatures 25, 400 and 537degreesC, respectively. The experimental results show that the elevated temperature tensile impact experimental technique and method adopted are feasible practically. SUS304 stainless steel is a sort of temperature and strain-rate dependent metal, i.e., the strain rate has the effect of strengthening on yield stress and ultimate stress, but embrittling on unstable strain. The unstable strain decreases with increasing temperature at a constant strain rate, exhibiting an elevated temperature embrittlement phenomenon. The microstructure analysis reveals that the elevated temperature embrittlement phenomenon is due to the 'sensitization' of SUS304. In the case of impact loading, the adiabatic temperature rise is also capable of leading to sensitization. The differences of specimens' fractograph between tensile impact and quasi-static tension probably involve different deformation and fracture mechanisms. It is found that the volume fraction of gamma --> alpha' transformation is strain, temperature and strain-rate dependent. (C) 2004 Kluwer Academic Publishers.
机译:使用带有高温炉的转盘间接杆-杆拉伸冲击装置,已经开发了高温拉伸冲击实验技术。通过快速接触加热获得了高达800摄氏度的样品温度,并进行了拉伸冲击实验以研究SUS304不锈钢在25-537摄氏度的温度范围内的力学行为。相反,准静态张力分别在25、400和537℃的三个温度下在MTS810上进行。实验结果表明,采用高温拉伸冲击试验技术和方法是切实可行的。 SUS304不锈钢是一种与温度和应变率有关的金属,即应变率对屈服应力和极限应力具有增强作用,但对不稳定应变具有脆化作用。在恒定的应变速率下,不稳定应变随着温度的升高而降低,表现出高温脆化现象。微观结构分析表明,高温脆化现象是由于SUS304的“敏化”引起的。在冲击载荷的情况下,绝热温度升高也能够导致敏化。试样的断口形貌在拉伸冲击和准静态拉伸之间的差异可能涉及不同的变形和断裂机理。发现γ→α′转化的体积分数与应变,温度和应变速率有关。 (C)2004 Kluwer学术出版社。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号