...
首页> 外文期刊>Journal of Materials Science >Fractographic and numerical study of hydrogen-plasticity interactions near a crack tip
【24h】

Fractographic and numerical study of hydrogen-plasticity interactions near a crack tip

机译:裂纹尖端附近氢-塑性相互作用的分形和数值研究

获取原文
获取原文并翻译 | 示例

摘要

This paper offers a fractographic and numerical study of hydrogen-plasticity interactions in the vicinity of a crack tip in a high-strength pearlitic steel subjected to previous cyclic (fatigue) precracking and posterior hydrogen-assisted cracking (HAC) under rising (monotonic) loading conditions. Experiments demonstrate that heavier cyclic preloading improves the HAC behaviour of the steel. Fractographic analysis shows that the microdamage produced by hydrogen is detectable through a specific microscopic topography: tearing topography surface or TTS. A high resolution numerical modelling is performed to reveal the elastoplastic stress-strain field in the vicinity of the crack tip subjected to cyclic preloading and subsequent monotonic loading up to the fracture instant in the HAC tests, and the calculated plastic zone extent is compared with the hydrogen-assisted microdamage region (TTS). Results demonstrate that the TTS depth has no relation with the active plastic zone dimension, i.e., with the size of the only region in which there is dislocation movement, so hydrogen transport cannot be attributed to dislocation dragging, but rather to random-walk lattice diffusion. It is, however, stress-assisted diffusion in which the hydrostatic stress field plays a relevant role. The beneficial effect of crack-tip plastic straining on HAC behaviour might be produced by the delay of hydrogen entry caused by residual compressive stresses and by the enhanced trapping of hydrogen as a consequence of the increase of dislocation density after cyclic plastic straining.
机译:本文提供了高强度珠光体钢裂纹尖端附近氢-塑性相互作用的分形和数值研究,其经历了先前的(单调)载荷下的循环(疲劳)预裂纹和后氢辅助裂纹(HAC)的作用。条件。实验表明,较重的循环预加载可改善钢的HAC行为。分形分析表明,由氢产生的微损伤可通过特定的微观形貌检测:撕裂形貌表面或TTS。进行了高分辨率的数值模拟,以揭示裂纹尖端附近的弹塑性应力-应变场在HAC测试中经历了循环预紧和随后的单调加载直至断裂瞬间,并与计算出的塑性区范围进行了比较。氢辅助微损伤区(TTS)。结果表明,TTS深度与活动塑性区的尺寸无关,即与位错运动的唯一区域的大小无关,因此氢的迁移不能归因于位错的拖动,而归因于随机游走的晶格扩散。但是,它是应力辅助扩散,其中静水应力场起着重要作用。尖端塑性应变对HAC行为的有益影响可能是由于残余压缩应力引起的氢进入延迟,以及由于周期性塑性应变后位错密度增加而增强了的氢捕获而产生的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号