...
首页> 外文期刊>Journal of Materials Processing Technology >Effect of corrosion prevention compounds on fatigue life in 2024-T3 aluminum alloy
【24h】

Effect of corrosion prevention compounds on fatigue life in 2024-T3 aluminum alloy

机译:防腐蚀剂对2024-T3铝合金疲劳寿命的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Corrosion-prevention-compound (CPC) is commonly used to prevent corrosion, in the aircraft industry. The presence of corrosive environment (salt-fog, water-fog, or even dry air) on aircraft structures has detrimental effects on the fatigue of aircraft components, which may initiate and also accelerate the crack growth rate in the structures. This study describes the crack-growth results of an experimental program on 2024-T3 aluminum alloy using center-crack specimen and also investigate the effect of CPC on fatigue life. The corrosion fatigue in the presence of water vapor reduces the total fatigue life. The fatigue life of structures with the CPC treatment is shown to increase the fatigue life due to the protection from the corrosive environment (water vapor). Test results are obtained for differing stress ratios and frequencies, with and without the CPC treatment, in humid testing-environment conducted at constant amplitude fatigue loading. Micrographs of the failed-specimen surfaces are examined by scanning electron microscope (SEM) to investigate the mechanisms of failure processes and to identify the formation of crack surface along the crack-front in the crack growth region. Interestingly, two distinct failure modes are found and these are ductile and brittle fracture modes. The transition from the ductile to brittle mode can be observed clearly in this work.
机译:在飞机工业中,防腐蚀化合物(CPC)通常用于防止腐蚀。飞机结构上存在腐蚀环境(盐雾,水雾甚至干空气)会对飞机部件的疲劳产生有害影响,这可能会引发并加速结构中的裂纹扩展速度。本研究描述了使用中心裂纹试样对2024-T3铝合金进行实验的程序的裂纹扩展结果,并研究了CPC对疲劳寿命的影响。在水蒸气存在下的腐蚀疲劳会降低总疲劳寿命。经过CPC处理的结构的疲劳寿命表明,由于具有免受腐蚀环境(水蒸气)的保护作用,因此可以提高疲劳寿命。在恒定振幅疲劳载荷下进行的潮湿测试环境中,在进行和不进行CPC的情况下,对于不同的应力比和频率,都获得了测试结果。通过扫描电子显微镜(SEM)检查失效试样表面的显微照片,以研究失效过程的机理,并确定在裂纹扩展区域沿裂纹前沿的裂纹表面的形成。有趣的是,发现了两种不同的失效模式,它们是韧性和脆性断裂模式。在这项工作中可以清楚地观察到从延性模式到脆性模式的过渡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号