首页> 外文期刊>Journal of manufacturing science and engineering: Transactions of the ASME >Increasing Part Accuracy in Additive Manufacturing Processes Using a k-d Tree Based Clustered Adaptive Layering
【24h】

Increasing Part Accuracy in Additive Manufacturing Processes Using a k-d Tree Based Clustered Adaptive Layering

机译:使用基于k-d树的群集自适应分层在增材制造过程中提高零件精度

获取原文
获取原文并翻译 | 示例
       

摘要

Additive manufacturing (AM) is widely used in aerospace, automobile, and medical industries for building highly accurate parts using a layer by layer approach. The stereo-lithography (STL) file is the standard file format used in AM machines and approximates the three-dimensional (3D) model of parts using planar triangles. However, as the STL file is an approximation of the actual computer aided design (CAD) surface, the geometric errors in the final manufactured parts are pronounced, particularly in those parts with highly curved surfaces. If the part is built with the minimum uniform layer thickness allowed by the AM machine, the manufactured part will typically have the best quality, but this will also result in a considerable increase in build time. Therefore, as a compromise, the part can be built with variable layer thicknesses, i.e., using an adaptive layering technique, which will reduce the part build time while still reducing the part errors and satisfying the geometric tolerance callouts on the part. This paper describes a new approach of determining the variable slices using a 3D k-d tree method. The paper validates the proposed k-d tree based adaptive layering approach for three test parts and documents the results by comparing the volumetric, cylindricity, sphericity, and profile errors obtained from this approach with those obtained using a uniform slicing method. Since current AM machines are incapable of handling adaptive slicing approach directly, a "pseudo" grouped adaptive layering approach is also proposed here. This "clustered slicing" technique will enable the fabrication of a part in bands of varying slice thicknesses with each band having clusters of uniform slice thicknesses. The proposed k-d tree based adaptive slicing approach along with clustered slicing has been validated with simulations of the test parts of different shapes.
机译:增材制造(AM)广泛用于航空航天,汽车和医疗行业,用于使用逐层方法构建高精度零件。立体光刻(STL)文件是AM机器中使用的标准文件格式,并使用平面三角形近似零件的三维(3D)模型。但是,由于STL文件是实际计算机辅助设计(CAD)曲面的近似值,因此最终制造零件中的几何误差非常明显,尤其是在曲面高度弯曲的零件中。如果以AM机器允许的最小均匀层厚度来制造零件,则制造的零件通常将具有最佳质量,但是这也将导致制造时间显着增加。因此,作为一种折衷,可以使用可变的层厚度来构建零件,即使用自适应分层技术,这将减少零件的构建时间,同时仍减少零件的误差并满足零件的几何公差标注。本文介绍了一种使用3D k-d树方法确定变量切片的新方法。本文验证了所提出的基于k-d树的三个测试零件的自适应分层方法,并通过比较从该方法获得的体积,圆柱度,球形度和轮廓误差与使用均匀切片方法获得的误差,记录了结果。由于当前的AM机器无法直接处理自适应切片方法,因此在此还提出了“伪”分组自适应分层方法。这种“聚类切片”技术将能够在不同切片厚度的带中制造零件,每个带具有均匀切片厚度的簇。所提出的基于k-d树的自适应切片方法以及聚类切片已通过不同形状的测试零件的仿真得到了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号