...
首页> 外文期刊>Journal of Inorganic Biochemistry: An Interdisciplinary Journal >Second sphere control of spin state: Differential tuning of axial ligand bonds in ferric porphyrin complexes by hydrogen bonding
【24h】

Second sphere control of spin state: Differential tuning of axial ligand bonds in ferric porphyrin complexes by hydrogen bonding

机译:自旋态的第二球控制:通过氢键对三价铁卟啉配合物中的轴向配体键进行微分调节

获取原文
获取原文并翻译 | 示例
           

摘要

An iron porphyrin with a pre-organized hydrogen bonding (H-Bonding) distal architecture is utilized to avoid the inherent loss of entropy associated with H-Bonding from solvent (water) and mimic the behavior of metalloenzyme active sites attributed to H-Bonding interactions of active site with the 2nd sphere residues. Resonance Raman (rR) data on these iron porphyrin complexes indicate that H-Bonding to an axial ligand like hydroxide can result in both stronger or weaker Fe(III)-OH bond relative to iron porphyrin complexes. The 6-coordinate (6C) complexes bearing water derived axial ligands, trans to imidazole or thiolate axial ligand with H-Bonding stabilize a low spin (LS) ground state (GS) when a complex without H-Bonding stabilizes a high spin (HS) ground state. DFT calculations reproduce the trend in the experimental data and provide a mechanism of how H Bonding can indeed lead to stronger metal ligand bonds when the axial ligand donates an H-Bond and lead to weaker metal ligand bonds when the axial ligand accepts an H-Bond. The experimental and computational results explain how a weak Fe(III)-OH bond (due to H-Bonding) can lead to the stabilization of low spin ground state in synthetic mimics and in enzymes containing iron porphyrin active sites. H-Bonding to a water ligand bound to a reduced ferrous active site can only strengthen the Fe(II)-OH2 bond and thus exclusion of water and hydrophilic residues from distal sites of O-2 binding/activating heme proteins is necessary to avoid inhibition of O-2 binding by water. These results help demonstrate the predominant role played by H-Bonding and subtle changes in its orientation in determining the geometric and electronic structure of iron porphyrin based active sites in nature. (C) 2015 Elsevier Inc. All rights reserved.
机译:具有预组织氢键(H-Bonding)远端结构的铁卟啉可避免溶剂(水)与H-Bonding相关的固有熵损失,并模拟归因于H-Bonding相互作用的金属酶活性位点的行为具有第二个球残基的活性位点。这些卟啉铁配合物的共振拉曼(rR)数据表明,相对于卟啉铁配合物,氢键合至轴向配体如氢氧化物可导致强(或弱)Fe(III)-OH键。当不具有H键合的复合物稳定高自旋(HS)时,带有水衍生轴向配体的6坐标(6C)配合物与具有H键合的反过来转变为咪唑或硫醇盐轴向配体,可稳定低自旋(LS)基态(GS)。 )基态。 DFT计算重现了实验数据的趋势,并提供了一种机制,说明当轴向配体提供氢键时,氢键的确能导致更强的金属配体键,而当轴向配体接受氢键时,氢键如何导致较弱的金属配体键。实验和计算结果解释了弱的Fe(III)-OH键(由于H键)如何能导致合成模拟物和含铁卟啉活性位点的酶中低自旋基态的稳定。 H键合到与还原的亚铁活性位点结合的水配体上只能增强Fe(II)-OH2键,因此从O-2结合/激活血红素蛋白的远端位点排除水和亲水残基对于避免抑制是必要的O-2与水结合。这些结果有助于证明氢键在确定自然界中基于铁卟啉的活性位点的几何和电子结构中起主要作用以及其方向的细微变化。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号