首页> 外文期刊>Journal of Inorganic Biochemistry: An Interdisciplinary Journal >Alkyne substrate interaction within the nitrogenase MoFe protein
【24h】

Alkyne substrate interaction within the nitrogenase MoFe protein

机译:固氮酶MoFe蛋白内的炔烃底物相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

Nitrogenase catalyzes the biological reduction of N(2) to ammonia (nitrogen fixation), as well as the two-electron reduction of the non-physiological alkyne substrate acetylene (HC triple bond CH). A complex metallo-organic species called FeMo-cofactor provides the site of substrate reduction within the MoFe protein, but exactly where and how substrates interact with FeMo-cofactor remains unknown. Recent results have shown that the MoFe protein alpha-70(Val) residue, whose side chain approaches one Fe-S face of FeMo-cofactor, plays a significant role in defining substrate access to the active site. For example, substitution of alpha-70(Val) by alanine results in an increased capacity for the reduction of the larger alkyne propyne (HC triple bond C-CH(3)), whereas, substitution by isoleucine at this position nearly eliminates the capacity for the reduction of acetylene. These and complementary spectroscopic studies led us to propose that binding of short chain alkynes occurs with side-on binding to Fe atom 6 within FeMo-cofactor. In the present work, the alpha-70(Val) residue was substituted by glycine and this MoFe protein variant shows an increased capacity for reduction of the terminal alkyne, 1-butyne (HC triple bond C-CH(2)-CH(3)). This protein shows no detectable reduction of the internal alkyne 2-butyne (H(3)C-C triple bond C-CH(3)). In contrast, substitution of the nearby alpha-191(Gln) residue by alanine, in combination with the alpha-70(Ala) substitution, does result in significant reduction of 2-butyne, with the exclusive product being 2-cis-butene. These results indicate that the reduction of alkynes by nitrogenases involves side-on binding of the alkyne to Fe6 within FeMo-cofactor, and that a terminal acidic proton is not required for reduction. The successful design of amino acid substitutions that permit the targeted accommodation of an alkyne that otherwise is not a nitrogenase substrate provides evidence to support the current model for alkyne interaction within the nitrogenase MoFe protein.
机译:固氮酶催化N(2)还原为氨的生物还原(固氮),以及非生理性炔基乙炔的双电子还原(HC三键CH)。称为FeMo-辅因子的复杂金属有机物可在MoFe蛋白内提供底物还原的位点,但底物与FeMo-辅因子相互作用的确切位置和方式尚不清楚。最近的结果表明,MoFe蛋白的α-70(Val)残基的侧链接近FeMo辅因子的一个Fe-S面,在定义底物接近活​​性位点方面起着重要作用。例如,用丙氨酸取代α-70(Val)会导致更大的炔烃丙炔(HC三键C-CH(3))的还原能力增强,而在该位置被异亮氨酸取代几乎消除了该能力用于还原乙炔。这些和互补的光谱学研究使我们提出,短链炔烃的结合与FeMo辅因子中的Fe原子6的侧面结合发生。在本工作中,α-70(Val)残基被甘氨酸取代,并且该MoFe蛋白变异体显示出减少末端炔烃1-丁炔(HC三键C-CH(2)-CH(3 ))。该蛋白质显示内部炔烃2丁炔(H(3)C-C三键C-CH(3))没有可检测的减少。相比之下,丙氨酸取代附近的α-191(Gln)残基与α-70(Ala)取代相结合,确实会导致2-丁炔的显着减少,排他性产物是2-顺丁烯。这些结果表明,通过固氮酶还原炔烃涉及炔烃与FeMo-辅因子内的Fe6的侧键结合,并且不需要末端酸性质子来还原。氨基酸取代的成功设计允许有针对性地容纳炔烃,否则该炔烃不是固氮酶的底物,这提供了证据来支持固氮酶MoFe蛋白内炔烃相互作用的当前模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号