首页> 外文期刊>Journal of hydrometeorology >Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part II: Turbulent Heat Fluxes and Soil Heat Transport
【24h】

Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part II: Turbulent Heat Fluxes and Soil Heat Transport

机译:诺亚模型物理在黄河源区的应用增强。第二部分:湍流和土壤热传递

获取原文
获取原文并翻译 | 示例
           

摘要

This is the second part of a study on the assessment of the Noah land surface model (LSM) in simulating surface water and energy budgets in the high-elevation source region of the Yellow River. Here, there is a focus on turbulent heat fluxes and heat transport through the soil column during the monsoon season, whereas the first part of this study deals with the soil water flow. Four augmentations are studied for mitigating the overestimation of turbulent heat flux and underestimation of soil temperature measurements: 1) the muting effect of vegetation on the thermal heat conductivity k(h) is removed from the transport of heat from the first to the second soil layer, 2) the exponential decay factor beta(veg) imposed on kh is calculated using the ratio of the leaf area index (LAI) over the green vegetation fraction (GVF), 3) Zilitinkevich's empirical coefficient C-zil for turbulent heat transport is computed as a function of the momentum roughness length z(0,m), and 4) the impact of organic matter is considered in the parameterization of the thermal heat properties. Although usage of organic matter for calculating kh improves the correspondence between the estimates and laboratory measurements of heat conductivities, it is shown to have a relatively small impact on the Noah LSM performance even for large organic matter contents. In contrast, the removal of the muting effect of vegetation on kh and the parameterization of beta(veg) greatly enhances the soil temperature profile simulations, whereas turbulent heat flux and surface temperature computations mostly benefit from the modified C-zil formulation. Further, the nighttime surface temperature overestimation is resolved from a coupled land-atmosphere perspective.
机译:这是对Noah地表模型(LSM)的评估研究的第二部分,该模型用于模拟黄河高海拔源区的地表水和能源收支。在这里,重点关注季风季节湍流通量和通过土壤柱的热传递,而本研究的第一部分则涉及土壤水流。为了减轻湍流通量的高估和土壤温度测量的低估,研究了四种增强方法:1)从第一层到第二层土壤的热传导中去除了植被对热导率k(h)的屏蔽作用,2)使用叶面积指数(LAI)与绿色植被分数(GVF)的比率计算施加到kh的指数衰减因子beta(veg),3)计算湍流热传递的Zilitinkevich经验系数C-zil作为动量粗糙度长度z(0,m)和4)的函数,在热热学参数化中考虑了有机物的影响。尽管使用有机物计算kh可以改善热导率的估算值与实验室测量值之间的对应关系,但即使对有机物含量较高的情况,也显示出它对Noah LSM性能的影响相对较小。相比之下,消除植被对kh的突变作用和β(veg)的参数化将大大增强土壤温度剖面模拟,而湍流通量和地表温度的计算主要受益于改进的C-zil公式。此外,从陆地-大气耦合的角度解决了夜间地表温度过高的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号