首页> 外文期刊>Journal of Hydrology >Topography representation methods for improving evaporation simulation in groundwater modeling
【24h】

Topography representation methods for improving evaporation simulation in groundwater modeling

机译:改善地下水模拟中蒸发模拟的地形表示方法

获取原文
获取原文并翻译 | 示例
       

摘要

In a groundwater model, surface elevations which are used in simulating the phreatic evaporation process are usually incorporated as spatially constant over discretized cells. Traditionally, a modeler obtains the data for surface elevations from point data or a digital elevation model (DEM) by means of extrapolation or interpolation. In this way, a smoothing error of surface elevations is introduced, which via the depth to groundwater propagates into evaporation simulation. As a consequence, the evaporation simulation results can be biased. In order to explore the influence of surface elevations on evaporation simulation, three alternative methods of representation of topography in calculating evaporation were studied. The first one is a traditional method which uses cell-wise constant elevations obtained by averaging surface elevations from the DEM with higher resolution for the corresponding model cells. The second one retains some information on the sub-pixet statistics of surface elevations from the DEM by a perturbation approach, calculating the second order first moment of evaporation with a Taylor expansion. In the third method, a finer discretization is used to represent the topography in calculating evaporation than is used to compute global groundwater flow. This allows to take into account the smaller scale variations of the surface elevation as given in the high resolution DEM data. For all the three methods, two different evaporation functions, a linear segment function and an exponential function have been used individually. In this paper, a groundwater model with a discretization of 500 x 500 m has been established white DEM data with a resolution of 90 x 90 m are available and resampled to 100 x 100 m cells for convenience of model input. The evaporation rates from a groundwater model with a discretization of 100 x 100 m, which has the same spatial distribution pattern of hydraulic parameters as the 500 x 500 m model, is taken as validation data. The comparisons of evaporation rates were carried out on different averaging scales ranging from 500 m to 2 km. The compared evaporation rates for each scale are obtained by summing up the corresponding evaporation rates from the 500 x 500 m model and the 100 x 100 m model. It is shown that the third method, which uses a finer resolution of topography in the evaporation calculation, yields the best results no matter which evaporation function is used. It is also seen that the correlation between the evaporation rates from the 500 x 500 m model and the 100 x 100 m model increases and values converge when comparing the evaporation results on an increasingly coarser scale, independently of the selected method and evaporation function.
机译:在地下水模型中,用于模拟潜水蒸发过程的表面高程通常作为空间常数纳入离散单元中。传统上,建模者通过外推或插值从点数据或数字高程模型(DEM)中获取表面高程数据。这样,引入了地表高程的平滑误差,该误差通过对地下水的深度传播到蒸发模拟中。结果,可以使蒸发模拟结果有偏差。为了探讨表面高程对蒸发模拟的影响,研究了在计算蒸发量时使用三种表示地形的方法。第一种是传统方法,该方法使用按单元恒定的高程,该高程是通过对来自DEM的表面高程进行平均而得到的,该高程对于相应的模型单元具有更高的分辨率。第二个方法通过微扰方法保留了来自DEM的表面高程的亚像素统计信息,并使用泰勒展开式计算了蒸发的二阶一阶矩。在第三种方法中,与用于计算整体地下水流量相比,在计算蒸发量时使用更精细的离散表示地形。这允许考虑高分辨率DEM数据中给出的较小的表面标度比例变化。对于这三种方法,已经分别使用了两个不同的蒸发函数,线性段函数和指数函数。在本文中,已经建立了离散度为500 x 500 m的地下水模型,可提供分辨率为90 x 90 m的白色DEM数据,并将其重新采样到100 x 100 m的像元中以方便模型输入。离散数据为100 x 100 m的地下水模型的蒸发速率作为验证数据,该蒸发模型具有与500 x 500 m模型相同的水力参数空间分布模式。蒸发速率的比较是在500 m至2 km的不同平均尺度上进行的。通过将500 x 500 m模型和100 x 100 m模型中的相应蒸发速率相加得出每个比例的比较蒸发速率。结果表明,第三种方法在蒸发计算中使用更精细的地形分辨率,无论使用哪种蒸发函数,都能获得最佳结果。还可以看出,当以越来越粗糙的规模比较蒸发结果时,与所选方法和蒸发功能无关,从500 x 500 m模型和100 x 100 m模型的蒸发速率之间的相关性增加并且值收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号