...
首页> 外文期刊>Journal of Hydrology >Chemical evolution of coal mine drainage in a non-acid producing environment, Wasatch Plateau, Utah, USA
【24h】

Chemical evolution of coal mine drainage in a non-acid producing environment, Wasatch Plateau, Utah, USA

机译:非酸生产环境下煤矿排水的化学演化,美国犹他州沃萨奇高原

获取原文
获取原文并翻译 | 示例
           

摘要

The causes and problems of coal mine drainage, particularly acid mine drainage, in the Eastern and Interior Coal Provinces of the United States are well documented. West of the Mississippi River, where coal mines account for about 45% of total US coal production and where acid mine drainage is rare, the chemical evolution of coal mine drainage is less well documented and understood Zn this investigation, we have used solute and isotopic compositions of non-evolved inflow groundwater and evolved mine discharge water to quantify the chemical evolution of mine discharge water in a western underground coal mine. Water enters the mine from fractures and roof bolt holes, which intercept groundwater in the overlying rock. Carbon-14, and H-3 data indicate that these waters recharged between 12,000 and 19,500 years ago. The TDS and solute compositions of roof drip waters are spatially zoned and TDS concentrations range from about 300 to 550 mg l(-1). After the water encounters minerals and other substances in the mine, the chemical differences between various mine regions become more pronounced and the TDS of mine drainage water increases to about 850 mg l(-1). The TDS of mine drainage is related to water-rock ratios. Mine drainage issuing from the older mined areas, where water-rock ratios are low, has the greatest TDS. Geochemical and isotopic mass balance calculations were performed to quantify chemical reactions in the mine, and to identify sources contributing to the TDS of mine drainage. Chemical reaction pathways evaluated include pyrite oxidation, dissolution of native and rock dust gypsum, dissolution of calcite and dolomite, precipitation of calcite, ion exchange, precipitation of iron hydroxide, and organic decomposition of mining machine emulsion fluid. Solute and isotopic mass transfer reaction calculations demonstrate that the oxidation of pyrite triggers a series of cascading in-mine chemical reactions that are the primacy cause of the elevated TDS of mine drainage relative to the TDS of roof-drip water. Pyrite oxidation does not result in acid drainage because of the buffering effect of abundant carbonate minerals. Dissolution of gypsum, both native and gypsum dust previously used as rock dust, is also a significant contributor of SO42+. Ion exchange of Ca2+ on the sodium zeolite analcime, which occurs in the coal, accounts for an increase in Na+ concentrations. Oxidation of fugitive longwall emulsion fluid produces abundant CO2(g) some of which indirectly affect the TDS of mine drainage. (C) 2000 Published by Elsevier Science B.V. [References: 25]
机译:在美国东部和内陆煤炭省,煤矿排水特别是酸性煤矿排水的原因和问题已得到充分记录。在密西西比河以西,那里的煤矿约占美国煤炭总产量的45%,而酸性矿井的排水很少,因此对矿井排水的化学演化的记录也较少,并且在本次调查中了解到锌,我们使用了溶质和同位素演化的地下地下水和演化的矿山排放水的组成,以量化西部地下煤矿的矿山排放水的化学演化。水从裂缝和屋顶螺栓孔进入矿井,这些孔和螺栓孔拦截上覆岩石中的地下水。 Carbon-14和H-3数据表明,这些水在12,000到19,500年前之间已经补给过。屋顶滴水的TDS和溶质组成在空间上划分成TDS浓度范围为约300至550 mg l(-1)。当水遇到矿井中的矿物质和其他物质后,各个矿区之间的化学差异变得更加明显,矿井排水的TDS增加到约850 mg l(-1)。矿山排水的TDS与水岩比有关。从水岩比低的较老矿区发出的排雷具有最大的TDS。进行了地球化学和同位素质量平衡计算,以量化矿井中的化学反应,并确定有助于矿井排水TDS的来源。评估的化学反应途径包括黄铁矿氧化,天然和岩粉石膏的溶解,方解石和白云石的溶解,方解石的沉淀,离子交换,氢氧化铁的沉淀以及采矿机乳化液的有机分解。溶质和同位素传质反应计算表明,黄铁矿的氧化触发了一系列级联的矿中化学反应,这是矿井排水TDS相对于屋顶滴水TDS升高的首要原因。由于丰富的碳酸盐矿物的缓冲作用,硫铁矿的氧化不会导致酸排出。石膏的溶解(以前用作岩粉的原生粉尘和石膏粉)也是SO42 +的重要贡献者。发生在煤中的钠沸石钠沸石上的Ca2 +离子交换导致Na +浓度增加。短壁长效乳状液的氧化产生大量的CO2(g),其中一些间接影响矿井排水的TDS。 (C)2000年由Elsevier Science B.V.出版[参考文献:25]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号