首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >The Syabru-Bensi hydrothermal system in central Nepal: 2. Modeling and significance of the radon signature
【24h】

The Syabru-Bensi hydrothermal system in central Nepal: 2. Modeling and significance of the radon signature

机译:尼泊尔中部的Syabru-Bensi热液系统:2. signature签名的建模及其意义

获取原文
获取原文并翻译 | 示例
       

摘要

The Syabru-Bensi hydrothermal system (SBHS), located in the Nepal Himalayas, is characterized by numerous hot (>30°C) springs and the release of dry, cold (<35°C) CO_2 associated with radon-222, detailed in the companion paper. In the SBHS, CO_2 and radon fluxes on the ground vary over 5–6 orders of magnitude, reaching exceptional mean values of 100 kgm~(-2) d~(-1) and 12 Bqm~(-2) s~(-1), respectively. This paper extends the companion paper by developing three quantitative models for the radon signature of CO_2 based on measurements of radon and radium concentrations in the spring waters and effective radium concentration of rocks and soils. The first model considers near-surface radon and CO_2 degassing from water, considered unlikely unless there exist currently unidentified large discharges of hydrothermal water. The second model considers CO_2, arising from deeper hydrothermal sources, incorporating radon from shallow radiumsources as it percolates upward toward the surface, considered more likely as a percolation depth of 100m is sufficient to account for the observed radon discharge. The third model considers the observed peak radon concentrations in the gas zones and assumes that gaseous CO_2 can be transported from kilometer-scale depths through a fault network connected to the zones. This lattermodel affords the possibility that variations of physical parameters at depths associated with earthquake nucleation might be detectable at the surface. Gas-dominated transport might operate in other locations in Himalayas and elsewhere and may be an important aspect of the coupled mechanisms associated with seismically active orogens.
机译:位于尼泊尔喜马拉雅山的Syabru-Bensi热液系统(SBHS)的特征是众多温泉(> 30°C)和与ra 222相关的干燥,寒冷(<35°C)CO_2的释放,详见随行纸。在SBHS中,地面上的CO_2和ra通量变化超过5–6个数量级,达到100 kgm〜(-2)d〜(-1)和12 Bqm〜(-2)s〜(-的异常平均值1)。本文基于对泉水中ra和镭浓度以及岩石和土壤中有效镭浓度的测量,通过开发三个定量模型来确定CO_2的signature特征,以此扩展了本文的补充。第一个模型考虑了近地表ra和从水中脱气的CO_2,除非目前尚未确定大量的热水热水排放,否则认为不可能。第二个模型考虑了CO_2,它是由更深的热液源产生的,它吸收了来自浅镭源的ra,因为它向上渗入地表,被认为更可能是100m的渗滤深度足以解释观测到的ra排放。第三个模型考虑了在气区中观测到的峰值ra浓度,并假设气态CO_2可以从千米规模的深度通过连接到该区的断层网络进行传输。后一种模型提供了在地表可检测到与地震成核有关的深度处的物理参数变化的可能性。天然气主导的运输可能在喜马拉雅山的其他地方和其他地方进行,并且可能是与地震活跃造山带相关的耦合机制的重要方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号