首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Effects of cohesion on the structural and mechanical evolution of fold and thrust belts and contractional wedges: Discrete element simulations
【24h】

Effects of cohesion on the structural and mechanical evolution of fold and thrust belts and contractional wedges: Discrete element simulations

机译:内聚力对褶皱和逆冲带和收缩楔的结构和力学演化的影响:离散元模拟

获取原文
获取原文并翻译 | 示例
       

摘要

Particle-based numerical simulations of cohesive contractional wedges can yield important perspectives on the formation and evolution of fold and thrust belts, offering particular insights into the mechanical evolution of the systems. Results of several discrete element method simulations are presented here, demonstrating the stress and strain evolution of systems with different initial cohesive strengths. Particle assemblages consolidated under gravity, and bonded to impart cohesion, are pushed from the left at a constant velocity above a weak, unbonded decollement surface. Internal thrusting causes horizontal shortening and vertical thickening, forming wedge geometries. The mean wedge taper is similar for all simulations, consistent with their similar residual and basal sliding friction values. In all examples presented here, both forethrusts and back thrusts occur, but forethrusts accommodate most of the shortening. Fault spacing and offset increase with increasing cohesion. Significant tectonic volume strain also occurs, with the greatest incremental volume strain occurring just outboard of the deformation front. This diffuse shortening serves to strengthen the unfaulted domain in front of the deformed wedge, preconditioning these materials for brittle (dilative) failure. The reach of this volumetric strain and extent of decollement slip increase with cohesive strength, defining the extent of stress transmission. Stress paths for elements tracked through the simulations demonstrate systematic variations in shear stress in response to episodes of both decollement slip and thrust fault activity, providing a direct explanation for stress fluctuations during convergence.
机译:基于粒子的粘性收缩楔形数值模拟可以提供有关褶皱和逆冲带形成和演化的重要观点,从而对系统的机械演化提供特殊见解。此处提供了几种离散元素方法模拟的结果,展示了具有不同初始内聚强度的系统的应力和应变演变。在重力作用下固结并结合以产生内聚力的颗粒集合体以恒定的速度从左侧推到一个弱的,未结合的分离面上方。内部推力会导致水平缩短和垂直加厚,从而形成楔形几何形状。平均楔形锥度在所有模拟中都是相似的,与它们相似的残余和基础滑动摩擦值一致。在此处显示的所有示例中,都发生了前推力和反推力,但是前推力可以适应大多数的缩短。断层间距和偏移量随着内聚力的增加而增加。还会出现明显的构造体积应变,最大的增量体积应变仅发生在变形前沿的外侧。这种弥散缩短缩短了变形楔形物前面的无缺陷区域,对这些材料进行了脆性(延性)破坏的预处理。该体积应变的范围和脱滑的程度随内聚强度的增加而增加,从而确定了应力传递的程度。通过模拟跟踪的元素的应力路径表明,响应于挠曲滑移和逆冲断层活动的发生,剪切应力的系统变化,为收敛过程中的应力波动提供了直接解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号