首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Current kinematics and dynamics of Africa and the East African Rift System
【24h】

Current kinematics and dynamics of Africa and the East African Rift System

机译:非洲和东非裂谷系统的当前运动学和动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Although the East African Rift System (EARS) is an archetype continental rift, the forces driving its evolution remain debated. Some contend buoyancy forces arising from gravitational potential energy (GPE) gradients within the lithosphere drive rifting. Others argue for a major role of the diverging mantle flow associated with the African Superplume. Here we quantify the forces driving present-day continental rifting in East Africa by (1) solving the depth averaged 3-D force balance equations for 3-D deviatoric stress associated with GPE, (2) inverting for a stress field boundary condition that we interpret as originating from large-scale mantle tractions, (3) calculating dynamic velocities due to lithospheric buoyancy forces, lateral viscosity variations, and velocity boundary conditions, and (4) calculating dynamic velocities that result from the stress response of horizontal mantle tractions acting on a viscous lithosphere in Africa and surroundings. We find deviatoric stress associated with lithospheric GPE gradients are ~8–20 MPa in EARS, and the minimum deviatoric stress resulting from basal shear is ~1.6 MPa along the EARS. Our dynamic velocity calculations confirm that a force contribution from GPE gradients alone is sufficient to drive Nubia-Somalia divergence and that additional forcing from horizontal mantle tractions overestimates surface kinematics. Stresses from GPE gradients appear sufficient to sustain present-day rifting in East Africa; however, they are lower than the vertically integrated strength of the lithosphere along most of the EARS. This indicates additional processes are required to initiate rupture of continental lithosphere, but once it is initiated, lithospheric buoyancy forces are enough to maintain rifting.
机译:尽管东非裂谷系统(EARS)是典型的大陆裂谷,但驱动其演化的力量仍存在争议。由岩石圈内的重力势能(GPE)梯度引起的某些竞争浮力驱动裂谷。其他人则认为,与非洲超级大片有关的地幔流动的主要作用。在这里,我们通过(1)求解与GPE相关的3-D偏应力的深度平均3-D力平衡方程,(2)求逆应力场边界条件,对东非大陆裂谷的驱动力进行了量化。解释为源于大规模地幔牵引,(3)计算岩石圈浮力,侧向黏度变化和速度边界条件引起的动态速度,以及(4)计算作用于水平地幔牵引的应力响应而产生的动态速度非洲及其周围的粘性岩石圈。我们发现在EARS中,与岩石圈GPE梯度相关的偏应力为〜8-20 MPa,由基底剪切引起的最小偏应力为〜1.6 MPa。我们的动态速度计算证实,仅GPE梯度产生的作用力就足以驱动Nubia-Somalia散度,并且水平地幔牵引产生的额外作用力高估了表面运动学。来自GPE梯度的应力似乎足以维持当今东非的裂谷。但是,它们低于大部分EARS岩石圈的垂直积分强度。这表明要启动大陆岩石圈破裂还需要其他过程,但是一旦破裂,岩石圈的浮力足以维持裂谷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号