首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Earthquake cycle deformation in the Tibetan plateau with a weak mid-crustal layer
【24h】

Earthquake cycle deformation in the Tibetan plateau with a weak mid-crustal layer

机译:中地壳薄弱的青藏高原地震周期变形

获取原文
获取原文并翻译 | 示例
       

摘要

Geodetic observations of interseismic deformation across the Tibetan plateau contain information about both tectonic and earthquake cycle processes. Time-variations in surface velocities between large earthquakes are sensitive to the rheological structure of the subseismogenic crust, and, in particular, the viscosity of the middle and lower crust. Here we develop a semianalytic solution for time-dependent interseismic velocities resulting from viscoelastic stress relaxation in a localized midcrustal layer in response to forcing by a sequence of periodic earthquakes. Earthquake cycle models with a weak midcrustal layer exhibit substantially more near-fault preseismic strain localization than do classic two-layer models at short (<100 yr) Maxwell times. We apply both this three-layer model and the classic two-layer model to geodetic observations before and after the 1997 M_W = 7.6 Manyi and 2001 M_W = 7.8 Kokoxili strike-slip earthquakes in Tibet to estimate the viscosity of the crust below a 20 km thick seismogenic layer. For these events, interseismic stress relaxation in a weak (viscosity ≤10~(18.5) Pa×s) and thin (height ≤20 km) midcrustal layer explains observations of both preseismic near-fault strain localization and rapid (>50 mm/yr) postseismic velocities in the years following the coseismic ruptures. We suggest that earthquake cycle models with a localized midcrustal layer can simultaneously explain both preseismic and postseismic geodetic observations with a single Maxwell viscosity, while the classic two-layer model requires a rheology with multiple relaxation time scales. Key Points We calculate velocities from repeated earthquakes with a weak mid-crustal layer A 3-layer model explains pre- and post-seismic geodetic observations in Tibet Estimated viscosity (<1e18.5 Pas) is consistent with a weak mid-crustal layer
机译:在青藏高原跨震变形的大地观测资料中包含有关构造和地震周期过程的信息。大地震之间地表速度的时变对亚地震成因壳的流变结构特别是中下壳的黏度敏感。在这里,我们为响应于一系列周期性地震的强迫作用而在局部中地壳层中产生的粘弹性应力松弛,开发了一种基于时间的地震速的半解析解。在短(<100年)的麦克斯韦时间,具有弱中地壳层的地震周期模型比经典的两层模型表现出更多的近断层地震前应变定位。我们将这三层模型和经典两层模型应用于1997年M_W = 7.6曼尼7.6和2001 M_W = 7.8西藏的科科西里走滑地震前后的大地观测,以估算20 km以下地壳的黏度厚的地震层。对于这些事件,在中地壳薄层(粘度≤10〜(18.5)Pa×s)和薄层(高度≤20km)中的地震应力松弛解释了地震前近断层应变局部化和快速(> 50 mm / yr)的观测结果。 )在同震破裂后的几年中的震后速度。我们建议,具有局部中地壳层的地震周期模型可以用单一麦克斯韦粘度同时解释地震前和地震后的大地观测,而经典的两层模型需要具有多个弛豫时间尺度的流变学。关键点我们通过地壳中层较弱的反复地震来计算速度3层模型解释了西藏地震前后的大地观测资料估计粘度(<1e18.5 Pas)与中地壳薄层一致

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号