首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Rupture complexity and the supershear transition on rough faults
【24h】

Rupture complexity and the supershear transition on rough faults

机译:断裂故障的破裂复杂性和超剪切转变

获取原文
获取原文并翻译 | 示例
       

摘要

Field investigations suggest that supershear earthquakes occur on geometrically simple, smooth fault segments. In contrast, dynamic rupture simulations show how heterogeneity of stress, strength, and fault geometry can trigger supershear transitions, as well as other complex rupture styles. Here we examine the Fang and Dunham (2013) ensemble of 2-D plane strain dynamic ruptures on fractally rough faults subject to strongly rate weakening friction laws to document the effect of fault roughness and prestress on rupture behavior. Roughness gives rise to extremely diverse rupture styles, such as rupture arrests, secondary slip pulses that rerupture previously slipped fault sections, and supershear transitions. Even when the prestress is below the Burridge-Andrews threshold for supershear on planar faults with uniform stress and strength conditions, supershear transitions are observed. A statistical analysis of the rupture velocity distribution reveals that supershear transients become increasingly likely at higher stress levels and on rougher faults. We examine individual ruptures and identify recurrent patterns for the supershear transition. While some transitions occur on fault segments that are favorably oriented in the background stress field, other transitions happen at the initiation of or after propagation through an unfavorable bend. We conclude that supershear transients are indeed favored by geometric complexity. In contrast, sustained supershear propagation is most common on segments that are locally smoother than average. Because rupture style is so sensitive to both background stress and small-scale details of the fault geometry, it seems unlikely that field maps of fault traces will provide reliable deterministic predictions of supershear propagation on specific fault segments.
机译:现场调查表明,超剪切地震发生在几何上简单,平滑的断层段上。相比之下,动态破裂模拟显示应力,强度和断层几何形状的异质性如何触发超剪切转变以及其他复杂的破裂样式。在这里,我们研究了F分和Dunham(2013)对分形粗糙断层的二维平面应变动态断裂的合奏,该断裂受强速率弱化摩擦定律的影响,以记录断层粗糙度和预应力对断裂行为的影响。粗糙度会引起极为不同的破裂方式,例如破裂停止,二次滑动脉冲(使先前滑动的断层部分破裂)和超剪切转变。即使在应力和强度条件相同的平面断层上,当预应力低于Burridge-Andrews超剪极限时,也会观察到超剪变。对破裂速度分布的统计分析表明,在较高应力水平和较粗糙的断层上,超剪切瞬变变得越来越可能。我们检查单个破裂并确定超剪切转变的复发模式。虽然某些过渡发生在有利于背景应力场的断层段上,但其他过渡发生在不利弯道的传播开始或之后。我们得出的结论是,几何形状复杂性确实有利于超剪切瞬变。相反,持续的超剪切传播在局部比平均水平平滑的路段上最常见。由于破裂方式对背景应力和小范围的断层几何形状都非常敏感,因此断层迹线的现场图似乎不可能提供特定断层段上超剪切传播的可靠确定性预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号