首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Evolution of stress-induced borehole breakout in inherently anisotropic rock: Insights from discrete element modeling
【24h】

Evolution of stress-induced borehole breakout in inherently anisotropic rock: Insights from discrete element modeling

机译:固有各向异性岩石中应力诱发的井眼破裂的演变:离散元建模的见解

获取原文
获取原文并翻译 | 示例
           

摘要

The aim of this study is to better understand the mechanisms controlling the initiation, propagation, and ultimate pattern of borehole breakouts in shale formation when drilled parallel with and perpendicular to beddings. A two-dimensional discrete element model is constructed to explicitly represent the microstructure of inherently anisotropic rocks by inserting a series of individual smooth joints into an assembly of bonded rigid discs. Both isotropic and anisotropic hollow square-shaped samples are generated to represent the wellbores drilled perpendicular to and parallel with beddings at reduced scale. The isotropic model is validated by comparing the stress distribution around borehole wall and along X axis direction with analytical solutions. Effects of different factors including the particle size distribution, borehole diameter, far-field stress anisotropy, and rock anisotropy are systematically evaluated on the stress distribution and borehole breakout propagation. Simulation results reveal that wider particle size distribution results in the local stress perturbations which cause localization of cracks. Reduction of borehole diameter significantly alters the crack failure from tensile to shear and raises the critical pressure. Rock anisotropy plays an important role on the stress state around wellbore which lead to the formation of preferred cracks under hydrostatic stress. Far-field stress anisotropy plays a dominant role in the shape of borehole breakout when drilled perpendicular to beddings while a secondary role when drilled parallel with beddings. Results from this study can provide fundamental insights on the underlying particle-scale mechanisms for previous findings in laboratory and field on borehole stability in anisotropic rock.
机译:这项研究的目的是更好地理解在平行于和垂直于地层钻探时,控制页岩地层中井眼破裂的发生,传播和最终模式的机制。通过将一系列单独的光滑缝插入粘合的刚性圆盘组件中,可以构建二维离散元素模型来明确表示固有各向异性岩石的微观结构。生成各向同性和各向异性的空心方形样品,以缩小比例表示垂直于和平行于地层的井眼。通过将井壁周围和沿X轴方向的应力分布与解析解进行比较,可以验证各向同性模型的有效性。系统地评估了粒径分布,井眼直径,远场应力各向异性和岩石各向异性等不同因素对应力分布和井眼破裂传播的影响。仿真结果表明,较宽的粒度分布会导致局部应力扰动,从而引起裂纹局部化。减小钻孔直径会显着地将裂纹破坏从拉伸变为剪切,并提高临界压力。岩石各向异性对井筒周围的应力状态起重要作用,导致在静水压力下形成优选的裂缝。垂直于地层钻探时,远场应力各向异性在井眼突围形状中起主要作用,而与地层平行钻探时,远场应力各向异性则起次要作用。这项研究的结果可以为有关各向异性岩石中井眼稳定性的实验室和现场先前发现的潜在颗粒尺度机理提供基本的见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号