...
首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Modeling the permeability evolution of microcracked rocks from elastic wave velocity inversion at elevated isostatic pressure
【24h】

Modeling the permeability evolution of microcracked rocks from elastic wave velocity inversion at elevated isostatic pressure

机译:等静压升高下弹性波速度反演模拟微裂纹岩石渗透率演化

获取原文
获取原文并翻译 | 示例
           

摘要

A key consequence of the presence of microcracks within rock is their significant influence upon elastic anisotropy and transport properties. Here two rock types (a basalt and a granite) with contrasting microstructures, dominated by microcracks, have been investigated using an advanced experimental arrangement capable of measuring porosity, P wave velocity, S wave velocity, and permeability contemporaneously at effective pressures up to 100 MPa. Using the Kachanov (1994) noninteractive effective medium theory, the measured elastic wave velocities are inverted using a least squares fit, permitting the recovery of the evolution of crack density and aspect ratio with increasing isostatic pressure. Overall, the agreement between measured and predicted velocities is good, with average error less than 0.05 km/s. At larger scales and above the percolation threshold, macroscopic fluid flow also depends on the crack density and aspect ratio. Using the permeability model of Guéguen and Dienes (1989) and the crack density and aspect ratio recovered from the elastic wave velocity inversion, we successfully predict the evolution of permeability with pressure for direct comparison with the laboratory measurements. We also calculate the evolution of the crack porosity with increasing isostatic pressure, on the basis of the calculated crack density, and compare this directly with the experimentally measured porosity. These combined experimental and modeling results illustrate the importance of understanding the details of how rock microstructures change in response to an external stimulus when predicting the simultaneous evolution of rock physical properties.
机译:岩石内存在微裂纹的一个关键后果是它们对弹性各向异性和传输特性的重大影响。在这里,已经使用一种先进的实验装置研究了两种结构类型不同的岩石(玄武岩和花岗岩),这些岩石具有微细的对比,它们可以在高达100 MPa的有效压力下同时测量孔隙率,P波速度,S波速度和渗透率。 。使用Kachanov(1994)非交互式有效介质理论,使用最小二乘拟合对测得的弹性波速度进行反演,从而随着等静压的增加恢复裂缝密度和长宽比的变化。总体而言,测得的速度与预测的速度之间的一致性很好,平均误差小于0.05 km / s。在更大的尺度上并超过渗滤阈值时,宏观的流体流动还取决于裂纹的密度和纵横比。使用Guéguen和Dienes(1989)的渗透率模型以及从弹性波速度反演中恢复的裂缝密度和纵横比,我们成功地预测了渗透率随压力的变化,可以直接与实验室测量结果进行比较。我们还根据计算出的裂纹密度计算出随等静压增加而产生的裂纹孔隙率的变化,并将其与实验测得的孔隙率直接进行比较。这些综合的实验和建模结果说明了预测岩石物理特性的同时演变时,了解岩石微观结构如何响应外部刺激而变化的细节的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号