首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Configurational anisotropy in single-domain and pseudosingle-domain grains of magnetite
【24h】

Configurational anisotropy in single-domain and pseudosingle-domain grains of magnetite

机译:磁铁矿单畴和拟单畴晶粒的构型各向异性

获取原文
获取原文并翻译 | 示例
       

摘要

In classical domain theory, single-domain (SD) grains change their magnetization by coherent rotation, where the energy barrier to domain reversal is provided by the magnetocrystalline anisotropy or by shape anisotropy for elongated grains. However, numerical micromagnetic models have shown that domain structure in SD grains is rarely perfectly uniform. For example, magnetite has significant “flowering” of its magnetization even in grains that approach the room temperature superparamagnetic (SP) size of ~30 nm. The flowering deforms slightly to accommodate the grain shape and thereby produces anisotropy independent of magnetocrystalline effects but dependent on magnetization direction within the grain. This can be similar in magnitude to that of magnetocrystalline anisotropy, even for equidimensional grains (where distance from the centroid to the grain faces is equal). The interaction of the domain structure and grain geometry is termed configurational anisotropy and has been studied mainly in relation to man-made isotropic magnetic media but received little attention in rock magnetism. In this paper we examine configurational anisotropy in SD to pseudo-single-domain (PSD) grains of magnetite using a three-dimensional finite element/boundary integral (FEBI) micromagnetic model. Equidimensional grains of magnetite of three different shapes are considered: a cube, an octahedron, and a regular tetrahedron, and in each case the effects magnetocrystalline anisotropy were removed in order to isolate the configurational anisotropy. The numerical models predict that very large coercivities are possible even for SD equidimensional grains. For tetrahedral grains coercivities of ~120 mT were obtained, which otherwise would require a grain elongation of ~1:1.75. Depending on the orientation of the principle crystalline axis to the grain shape, the configurational anisotropy may increase or decrease the overall energy barrier to domain reversal.
机译:在经典磁畴理论中,单畴(SD)晶粒通过相干旋转来改变其磁化强度,其中磁畴晶体各向异性或细长晶粒的形状各向异性提供了畴反转的能垒。但是,数值微磁模型表明,SD晶粒中的畴结构很少完全均匀。例如,磁铁矿即使在接近室温〜30 nm的超顺磁性(SP)尺寸的晶粒中也具有明显的“开花”。开花略微变形以适应晶粒形状,从而产生与磁晶效应无关,但取决于晶粒内磁化方向的各向异性。即使对于等维晶粒(从质心到晶粒面的距离相等),这在大小上也可以与磁晶各向异性相似。畴结构和晶粒几何形状之间的相互作用被称为构型各向异性,并且已经主要针对人造各向同性磁介质进行了研究,但在岩石磁性方面却很少受到关注。在本文中,我们使用三维有限元/边界积分(FEBI)微磁模型研究了SD到磁铁矿的伪单畴(PSD)晶粒的构型各向异性。考虑了三种不同形状的磁铁矿的等维晶粒:一个立方体,一个八面体和一个规则的四面体,并且在每种情况下都去除了磁晶各向异性的影响,以便隔离出形态各向异性。数值模型预测,即使对于SD等维晶粒,也可能具有非常大的矫顽力。对于四面体晶粒,矫顽力约为120 mT,否则将需要约1:1.75的晶粒伸长率。取决于主晶轴相对于晶粒形状的取向,构型各向异性可以增加或减小对畴反转的总能垒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号