首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Upper crustal structure of Newberry Volcano from P-wave tomography and finite difference waveform modeling
【24h】

Upper crustal structure of Newberry Volcano from P-wave tomography and finite difference waveform modeling

机译:基于P波层析成像和有限差分波形模拟的纽伯里火山上地壳结构

获取原文
获取原文并翻译 | 示例
       

摘要

Seismic tomography combined with waveform modeling constrains the dimensions and melt content of a magma body in the upper crust at Newberry Volcano. We obtain a P-wave tomographic image by combining travel-time data collected in 2008 on a line of densely spaced seismometers with active-source data collected in the 1980s. The tomographic analysis resolves a high-velocity intrusive ring complex surrounding a low-velocity caldera-fill zone at depths above 3 km and a broader high-velocity intrusive complex surrounding a central low-velocity anomaly at greater depths(3-6 km). This second, upper-crustal low-velocity anomaly is poorly resolved and resolution tests indicate that an unrealistically large, low-velocity body representing ~60 km ~3 of melt could be consistent with the available travel times. The 2008 data exhibit low amplitude first arrivals and an anomalous secondary P wave phase originating beneath the caldera. Two-dimensional finite difference waveform modeling through the tomographic velocity model does not reproduce these observations. To reproduce these phases, we predict waveforms for models that include synthetic low-velocity bodies and test possible magma chamber geometries and properties. Three classes of models produce a transmitted P-phase consistent with the travel time and amplitude of the observed secondary phase and also match the observed lower amplitude first arrivals. These models represent a graded mush region, a crystal-suspension region, and a melt sill above a thin mush region. The three possible magma chamber models comprise a much narrower range of melt volumes(1.6-8.0 km ~3)than could be constrained by travel-time tomography alone.
机译:地震层析成像与波形建模相结合,限制了纽伯利火山上地壳中岩浆体的尺寸和熔体含量。我们通过将密集间隔的地震仪在2008年收集的传播时间数据与1980年代收集的活动源数据相结合,获得P波断层图像。层析成像分析解决了在3 km以上深度处围绕低速火山口填充区的高速侵入性环复合体和在更大深度(3-6 km)附近围绕中央低速异常的较宽的高速侵入性环复合体。第二个上地壳低速异常的分辨力很差,分辨率测试表明,代表约60 km〜3熔体的不切实际的大型低速体可能与可用的传播时间一致。 2008年的数据显示出低振幅的首次到达和来自破火山口下方的异常次生P波相位。通过层析速度模型的二维有限差分波形建模不能重现这些观察结果。为了重现这些相位,我们预测了包括合成低速物体的模型的波形,并测试了岩浆室的几何形状和特性。三类模型产生的传输P相与观测到的次级相的传播时间和幅度一致,并且与观测到的较低幅度的首次到达相匹配。这些模型表示渐变的糊状区,晶体悬浮区和薄糊状区上方的熔块。三种可能的岩浆室模型所包含的熔体体积范围要窄得多(1.6-8.0 km〜3),这比仅通过行进时间层析成像所能约束的范围小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号