首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long‐runout volcanic avalanches
【24h】

Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long‐runout volcanic avalanches

机译:简单流变规律对致密火山碎屑流和长跳变火山雪崩数值模拟的适用性

获取原文
获取原文并翻译 | 示例
       

摘要

The rheology of volcanic rock avalanches and dense pyroclastic flows is complex, and it is difficult at present to constrain the physics of their processes. The problem lies in defining the most suitable parameters for simulating the behavior of these natural flows. Existing models are often based on the Coulomb rheology, sometimes with a velocitydependent stress (e.g., Voellmy), but other laws have also been used. Here I explore the characteristics of flows, and their deposits, obtained on simplified topographies by varying source conditions and rheology. The Coulomb rheology, irrespective of whether there is a velocity‐dependent stress, forms cone‐shaped deposits that do not resemble those of natural long‐runout events. A purely viscous or a purely turbulent flow can achieve realistic velocities and thicknesses but cannot form a deposit on slopes. The plastic rheology, with (e.g., Bingham) or without a velocity‐dependent stress, is more suitable for the simulation of dense pyroclastic flows and long‐runout volcanic avalanches. With this rheology, numerical flows form by pulses, which are often observed during natural flow emplacement. The flows exhibit realistic velocities and deposits of realistic thicknesses. The plastic rheology is also able to generate the frontal lobes and lateral levées which are commonly observed in the field. With the plastic rheology, levée formation occurs at the flow front due to a divergence of the driving stresses at the edges. Once formed, the levées then channel the remaining flow mass. The results should help future modelers of volcanic flows with their choice of which mechanical law corresponds best to the event they are studying.
机译:火山岩雪崩的流变学和致密的火山碎屑流是复杂的,目前很难限制其过程的物理性质。问题在于定义最合适的参数来模拟这些自然流的行为。现有模型通常基于库仑流变学,有时具有与速度有关的应力(例如,Voellmy),但是也使用了其他定律。在这里,我探讨了通过改变源条件和流变学在简化的地形上获得的水流及其沉积物的特征。不管是否存在与速度有关的应力,库仑流变学形成的圆锥形沉积物都与自然长跳变事件的沉积物不同。纯粹的粘性或纯粹的湍流可以达到实际的速度和厚度,但不能在斜坡上形成沉积物。具有(例如Bingham)应力或没有速度依赖应力的塑性流变学更适合于模拟密集的火山碎屑流和长跳动的火山雪崩。通过这种流变学,数值流是由脉冲形成的,通常在自然流放置过程中会观察到。流动表现出真实的速度和真实厚度的沉积。塑性流变学还能够产生在田间通常观察到的额叶和侧向肋骨。在塑性流变学中,由于边缘处的驱动应力的发散,在流动前沿发生了流浆形成。堤一旦形成,便将剩余的水流引导。结果应有助于未来的火山流建模者选择哪种机械定律最适合他们正在研究的事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号