首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Evaluation of potential nonisothermal processes and heat transport during CO_2 sequestration
【24h】

Evaluation of potential nonisothermal processes and heat transport during CO_2 sequestration

机译:评估CO_2封存过程中潜在的非等温过程和热传输

获取原文
获取原文并翻译 | 示例
       

摘要

Injection of CO_2 may perturb subsurface temperatures, leading to a dynamic temperature system in the storage formation and adjacent seal strata. In most cases, the individual effects from wellbore dynamics, solvation reactions, and phase changes are incremental, but collectively these relevant processes may cause significant temperature changes compared to ambient conditions. In this work, we evaluated several potential nonisothermal effects resulting from CO_2 injection activity. These include the Joule-Thomson (heating and cooling) effect, exothermic CO_2 dissolution, and heat changes associated with concomitant water vaporization. Results suggest that three effects: a) the adiabatic (de-) compression of CO_2, b) the frictional energy losses, and c) conductive heat exchange between the injected CO_2 and surrounding fluid/rock, govern the resulting CO_2 thermal profiles within an injection well. In addition, as supercritical-phase CO_2 comes into contact with formation brine, the CO_2will dissolve into the aqueous phase, and such dissolution is exothermic at typical conditions for CO_2 sequestration. However, we still seek a better understanding of heat effects associated with water vaporization into the supercritical-phase CO_2. Finally, sensitivity studies, simulating supercritical-phase CO_2 injection into a 1-D radially symmetric domain, are conducted to evaluate the magnitude of different heat disequilibrium potentials and spatial location in the CO_2 plume affected by thermal processes. In addition, time-scales associated with migration rates of temperature fronts, pressure pulses, and dissolved- and supercritical-phase CO_2 profiles are investigated with a function of heat capacities of rock, different effective thermal conductivities, penneabilities, and porosities. Our results demonstrate that adiabatic CO_2 compression occurring in injection wells could have the most significant impact on the temperature change whilst the exothermic CO_2 dissolution occurred at the largest spatial domain.
机译:注入CO_2可能会扰乱地下温度,从而导致储层和邻近海豹地层的动态温度系统。在大多数情况下,井眼动力学,溶剂化反应和相变的单独影响是渐进的,但与环境条件相比,这些相关过程可能会导致温度显着变化。在这项工作中,我们评估了由CO_2注入活动引起的几种潜在的非等温效应。这些包括焦耳-汤姆森效应(加热和冷却),放热的CO_2溶解以及伴随水汽化的热变化。结果表明,三种影响:a)绝热(去压缩)CO_2,b)摩擦能量损失,以及c)注入的CO_2与周围流体/岩石之间的传导热交换,决定了注入过程中产生的CO_2热剖面好。另外,当超临界相CO_2与地层盐水接触时,CO_2将溶解到水相中,并且这种溶解在用于CO_2螯合的典型条件下是放热的。但是,我们仍然希望更好地了解与水汽化为超临界相CO_2相关的热效应。最后,进行了敏感性研究,模拟了将超临界相CO_2注入一维径向对称区域的过程,以评估受热过程影响的不同热不平衡势的大小以及CO_2羽流中的空间位置。此外,还研究了与温度前沿,压力脉冲以及溶解相和超临界相CO_2分布有关的时标,并具有岩石的热容,不同的有效热导率,渗透率和孔隙度的函数。我们的结果表明,在注入井中发生的绝热CO_2压缩对温度变化的影响最大,而放热的CO_2溶解发生在最大的空间域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号