首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Coseismic strengthening of the shallow portion of the subduction fault and its effects on wedge taper
【24h】

Coseismic strengthening of the shallow portion of the subduction fault and its effects on wedge taper

机译:俯冲断层浅部的地震抗震作用及其对楔形锥度的影响

获取原文
获取原文并翻译 | 示例
       

摘要

According to the dynamic Coulomb wedge model, coseismic strengthening of the shallowest part of the subduction interface can cause permanent deformation of the overlying outer wedge, so that the cumulative effects of great interplate earthquakes control the geometry of the wedge. In this work, we use a numerical model, which is a hybrid of the frictional contact model and the classical crack model, to study how stress is coseismically transferred from the seismogenic zone to the strengthening updip zone to cause wedge deformation. In this static model, the “critical strengthening” required to prevent the rupture from breaking the trench depends on the force drop of the seismogenic zone, defined as the product of the average shear stress drop and the area of the seismogenic zone. In a simple model of uniform material properties with a few megapascals average stress drop over a seismogenic zone of 120 km downdip width, the critical strengthening for a 30 km wide updip zone is an increase in the effective friction coefficient by about 0.05. Using the Coulomb wedge theory, we demonstrate that this level of strengthening can readily push the overlying wedge into a critical state of failure. With much greater strengthening, the rupture is able to extend into the updip zone only slightly, causing localized wedge compression in the area of slip termination. We examined wedge geometry of 22 subduction zones in the light of the model results. We found that the surface slope of these wedges is generally too high to be explained using the classical wedge theory but can be explained using the dynamic Coulomb wedge model including coseismic strengthening of the shallow portion of the megathrust.
机译:根据动态库仑楔模型,俯冲界面最浅部分的同震增强会导致上覆外楔的永久变形,因此板间大地震的累积效应控制了楔的几何形状。在这项工作中,我们使用一个数值模型(该模型是摩擦接触模型和经典裂缝模型的混合体)来研究应力如何从地震发生区同震地传递到加强上倾区,从而引起楔形变形。在该静态模型中,为防止断裂破裂而需要的“临界加固”取决于产地震带的力降,该降力定义为平均剪切应力降与产地震带面积的乘积。在一个均匀的材料特性的简单模型中,在下倾宽度为120 km的一个地震成因带上,平均应力下降了几兆帕,对于30 km宽的下倾区域,关键的强化是有效摩擦系数增加了约0.05。使用库仑楔形理论,我们证明了这种加固水平可以很容易地将上覆的楔形结构推入破坏的临界状态。通过更大程度的加强,破裂仅能稍微延伸到上倾区域,从而在滑动终止区域引起局部楔形压缩。我们根据模型结果检查了22个俯冲带的楔形几何形状。我们发现这些楔的表面坡度通常过高,无法使用经典楔理论进行解释,但可以使用动态库仑楔模型进行解释,其中包括大推力浅部的同震加固。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号