首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >On the patterns of wing cracks along an outcrop scale flaw: A numerical modeling approach using complementarity
【24h】

On the patterns of wing cracks along an outcrop scale flaw: A numerical modeling approach using complementarity

机译:沿露头尺度缺陷的机翼裂纹模式:利用互补性的数值建模方法

获取原文
获取原文并翻译 | 示例
           

摘要

The 2D Displacement Discontinuity Method (DDM) is combined with a complementarity algorithm to model the quasi-static formation and patterns of wing cracks that emanate from regions of stress concentration along a sliding frictional flaw in an otherwise homogeneous and isotropic elastic material. Because stress states and geometry change with sliding on the flaw and wing crack propagation, one cannot specify the boundary conditions a priori. Under these circumstances complementarity is superior to other well-known contact algorithms. We focus on meter scale phenomena where mineralogical heterogeneity (common to centimeter-scale laboratory samples) and 3D geometry (common to kilometer-scale crustal structures) reasonably can be ignored. Analytical solutions to the elastic boundary value problem of the closed sliding flaw include those that assume no friction, uniform friction, and a cohesive end zone (CEZ), and those that assume infinitesimal or straight wing cracks. Here we generalize the problem to consider linearly varying friction in the CEZ and curved wing cracks, and we allow the sliding flaw to open when mechanical interaction with the wing crack dictates that it should. Trace lengths of 135 strike-slip faults in sandstone are linearly related to wing crack lengths ranging from 0.16 to 72 m and correspond to a range of remote principal stress ratios: 0.06 ≤ σ 2/σ 1 ≤ 0.2. Opening displacement profiles of wing cracks from the numerical model can be significantly different from analytical solutions. These solutions may produce significant errors in stable crack length for curved propagation paths. The smeared out stress concentration in the CEZ and the heterogeneity in strength of rock suggest that multiple wing cracks may form in one slip event. The mechanical interactions of these cracks leads to kink angles that increase with distance from the flaw tip, a relationship commonly observed in nature.
机译:2D位移不连续性方法(DDM)与互补算法相结合,可对机翼裂纹的准静态形成和模式进行建模,这些裂纹是由应力集中的区域沿滑动摩擦缺陷产生的,而这些均是均质各向同性的弹性材料。由于应力状态和几何形状会随着在缺陷上的滑动和机翼裂纹的扩展而变化,因此无法先验指定边界条件。在这种情况下,互补性优于其他众所周知的联系算法。我们关注的是米级现象,在这种情况下,可以合理地忽略矿物异质性(常见于厘米级实验室样品)和3D几何形状(常见于千米级地壳结构)。闭合滑动缺陷的弹性边界值问题的解析解包括不带摩擦力,均匀摩擦和内聚端区(CEZ)的解析解,以及无穷小或直翼裂纹的解析解。在这里,我们将问题概括为考虑CEZ和弯曲的机翼裂纹中的线性变化的摩擦,并且当与机翼裂纹的机械相互作用指示必须存在时,我们允许打开滑动缺陷。砂岩中135条走滑断层的痕迹长度与机翼裂纹长度在0.16至72 m范围内线性相关,并且对应于一个较远的主应力比范围:0.06≤σ2 /σ1≤0.2。数值模型中机翼裂纹的开口位移轮廓可能与解析解有很大不同。这些解决方案可能会在弯曲传播路径的稳定裂纹长度上产生重大误差。 CEZ中涂抹的应力集中和岩石强度的不均匀性表明,在一次滑动事件中可能会形成多个机翼裂纹。这些裂纹的机械相互作用导致扭折角随距缺陷尖端的距离而增加,这是自然界中普遍观察到的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号