首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Thermal observations of gas pistoning at Kilauea Volcano
【24h】

Thermal observations of gas pistoning at Kilauea Volcano

机译:基拉韦厄火山上气体活塞的热观测

获取原文
获取原文并翻译 | 示例
           

摘要

Data acquired by three continuously recording thermal infrared thermometers situated on the north rim of Pu`u `O`o Crater at Kilauea Volcano during 2002 revealed episodes of periodic thermal pulses originating from a degassing vent on the crater floor. These thermal pulses are interpreted as gas release (jetting events) associated with gas pistoning, a mechanism observed previously at both Mauna Ulu and Pu`u `O`o. During a 35-day-long period spanning June and July 2002, gas pistoning was frequently the dominant mode of gas release, with as many as several hundred pulses occurring in uninterrupted series. On other days, degassing alternated between periods of quasi-continuous gas jetting and intervals of gas pistoning that contained a few to a few dozen pulses. Characteristic time intervals between pistoning events ranged from 2 up to 7 min. We identify three types of pistoning. Type 1 involves emission of lava, followed by gas jetting and drain back; type 2 is the same but the elevated position of the vent does not allow postjet drain back; and type 3 involves gas jetting only with no precursory lava flow. To explain gas pistoning, we apply a model whereby a stagnant cap of degassed magma develops in the conduit below the vent. Gas bubbles rise through the magma column and collect under the cap. The collective buoyancy of these bubbles pushes the cap upward. When the cap reaches the surface, it erupts from the vent as a lava flow. Unloading of the conduit magma in this way results in an abrupt pressure drop (i.e., the overburden felt by the bubbles is reduced), causing explosive gas expansion in the form of gas jetting from the vent. This terminates the event and lava drains back into the conduit to start the cycle anew. In the case where there is no surface lava emission or drain back, the cap instead pushes into and spreads out within a subsurface cavity. Again, this unloads the conduit magma and terminates in explosive gas release. Once gas is expelled, lava in the cavity is free to drain back. We hypothesize that pistoning is a stable mode of degassing for low-viscosity basaltic magmas with appropriate conduit geometries and volatile supply rates.
机译:位于基拉韦厄火山Pu'uʻoʻO火山口北缘的三个连续记录的热红外温度计在2002年获得的数据显示,周期性的热脉冲发作是由火山口底部的排气孔引起的。这些热脉冲被解释为与气体活塞相关的气体释放(喷射事件),这是以前在莫纳乌鲁(Mauna Ulu)和普阿欧(PuʻuʻOʻo)都观察到的一种机制。在2002年6月至2002年7月的长达35天的时间里,气体活塞作用经常是气体释放的主要方式,多达数百个脉冲不间断地发生。在其他日子里,脱气在准连续气体喷射周期和包含几到几十个脉冲的气体活塞间隔之间交替进行。活塞事件之间的特征时间间隔为2到7分钟。我们确定了三种类型的活塞。第一种类型涉及熔岩的排放,然后进行气体喷射和回排;类型2相同,但通风孔的抬高位置不允许后喷回流。而类型3仅涉及没有先验熔岩流的气体喷射。为了解释气体活塞作用,我们应用了一个模型,在该模型中,排气口下方的导管中形成了脱气的岩浆停滞盖。气泡上升穿过岩浆柱并聚集在盖下。这些气泡的共同浮力将瓶盖向上推。当盖子到达表面时,它会随着熔岩流从通风口喷涌而出。以这种方式使导管岩浆卸荷会导致突然的压降(即减少了气泡所产生的覆盖层),从而导致爆炸性气体膨胀,形成的气体形式是从排气孔喷出的。这终止了事件,熔岩流回到导管中,重新开始循环。在没有表面熔岩喷出或回流的情况下,瓶盖将推入地下腔中并在其中扩散。同样,这使导管岩浆卸载并终止于爆炸性气体释放。排出气体后,空腔中的熔岩可以自由流回。我们假设对于具有适当导管几何形状和挥发性供应速率的低粘度玄武岩浆,活塞化是一种稳定的脱气模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号