首页> 外文期刊>Journal of geophysical research. Planets >The transition from complex craters to multi-ring basins on the Moon: Quantitative geometric properties from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter (LOLA) data
【24h】

The transition from complex craters to multi-ring basins on the Moon: Quantitative geometric properties from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter (LOLA) data

机译:从复杂的环形山到月球上的多环盆地的过渡:来自月球侦察轨道器的定量几何特性月球轨道器激光高度计(LOLA)数据

获取原文
获取原文并翻译 | 示例
       

摘要

The morphologic transition from complex impact craters, to peak-ring basins, and to multi-ring basins has been well-documented for decades. Less clear has been the morphometric characteristics of these landforms due to their large size and the lack of global high-resolution topography data. We use data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft to derive the morphometric characteristics of impact basins on the Moon, assess the trends, and interpret the processes involved in the observed morphologic transitions. We first developed a new technique for measuring and calculating the geometric/ morphometric properties of impact basins on the Moon. This new method meets a number of criteria that are important for consideration in any topographic analysis of crater landforms (e.g., multiple data points, complete range of azimuths, systematic, reproducible analysis techniques, avoiding effects of post-event processes, robustness with respect to the statistical techniques). The resulting data more completely capture the azimuthal variation in topography that is characteristic of large impact structures. These new calculations extend the well-defined geometric trends for simple and complex craters out to basin-sized structures. Several new geometric trends for peak-ring basins are observed. Basin depth: A factor of two reduction in the depth to diameter (d/D_r) ratio in the transition from complex craters to peak-ring basins may be characterized by a steeper trend than known previously. The d/D_r ratio for peak-ring basins decreases with rim-crest diameter, which may be due to a non-proportional change in excavation cavity growth or scaling, as may occur in the simple to complex transition, or increased magnitude of floor uplift associated with peak-ring formation. Wall height, width, and slope: Wall height and width increase with increasing rim-crest diameter, while wall slope decreases; decreasing ratios of wall width to radius and wall height to depth may reflect burial of wall slump block toes by impact melt redistribution during transient cavity collapse. Melt expulsion from the central basin may help to explain the observed increase in floor height to depth ratio; such central depressions are seen within the largest peak-ring basins. Peak-ring height: Heights of peak rings increase with increasing rim-crest diameter (similar to central peak heights in complex craters); peak-ring height to basin depth ratio also increases, suggesting that floor uplift is even larger in magnitude in the largest peak-ring basins. No correlation is found between peak-ring elevation and distance to the rim wall within a single basin, suggesting that rim-wall slumping does not control the topography of peak rings. Offset of peak rings: Peak rings often show minor offset from the basin center. Enhancement in peak-ring elevation in the direction of offset is generally not observed, although this could be a function of magnitude of offset. Basin volume: Volumes of peak-ring basins are about 40% smaller than the volumes predicted by geophysical estimates of the dimensions of corresponding excavation cavities. This difference indicates that collapse of the transient cavity must result in large inward and upward translations of the cavity floor. These new observations of geometric/morphometric properties of protobasins and peak-ring basins place some constraints on the processes controlling the onset and formation of interior landforms in peak-ring basins. Comparisons of the geometric trends of the inner rings of Orientale basin with those of peak-ring basins are generally consistent with a mega-terrace model for the formation of multi-ring basins.
机译:从复杂的撞击坑到峰环盆地,再到多环盆地的形态转变已有数十年的文献记载。这些地貌的大尺寸和缺乏全球高分辨率的地形数据,使得它们的形态特征尚不清楚。我们使用月球侦察轨道飞行器(LRO)航天器上的月球轨道激光高度计(LOLA)仪器中的数据得出月球撞击盆地的形态特征,评估趋势并解释所观察到的形态转变所涉及的过程。我们首先开发了一种新技术,用于测量和计算月球撞击盆地的几何/形态特征。这种新方法符合许多标准,这些标准对于火山口地貌的任何地形分析都非常重要(例如,多个数据点,完整的方位角范围,系统的,可重复的分析技术,避免事后处理的影响,相对于鲁棒性的鲁棒性)。统计技术)。所得数据更完整地捕获了地形的方位角变化,这是大型撞击结构的特征。这些新的计算将简单和复杂的火山口的明确的几何趋势扩展到盆地大小的结构。观察到峰环盆地的几种新的几何趋势。盆地深度:从复杂的火山口盆地向峰环盆地过渡的深度与直径之比(d / D_r)减小了两倍,其特征可能是比以前已知的趋势更为陡峭。峰环盆地的d / D_r比随边缘波峰直径而减小,这可能是由于开挖腔的生长或结垢的非比例变化所致,例如在简单到复杂的过渡过程中可能发生的情况,或者底板隆起的幅度增加了与峰环形成有关。壁高,宽度和坡度:壁高和宽度随轮辋顶直径的增加而增加,而壁坡度减小;壁宽与半径的比值减小,壁高与深度的比值减小,可能反映了在瞬态空腔坍塌过程中冲击熔体的重新分布,从而使壁坍塌块脚趾埋葬。中央盆地的融解物排出可能有助于解释所观察到的地面高度与深度之比的增加。在最大的峰环盆地内可以看到这种中央凹陷。峰环高度:峰环的高度随轮辋峰直径的增加而增加(类似于复杂环形山的中心峰高);峰环高度与盆地深度之比也增加,这表明在最大的峰环盆地中,地面隆升的幅度甚至更大。在单个盆地内,峰环高度与到边缘壁的距离之间没有相关性,这表明边缘壁塌陷并不能控制峰环的形貌。峰环的偏移:峰环通常显示出与盆地中心的较小偏移。尽管这可能是偏移量的函数,但通常未观察到在偏移方向上峰环高度的增强。盆地体积:峰环盆地的体积比相应开挖孔尺寸的地球物理估算所预测的体积小约40%。这种差异表明,瞬态空腔的坍塌必定会导致空腔底部向内和向上的大平移。对原盆地和峰环盆地的几何/形态学特性的这些新观察对控制峰环盆地内部地貌的形成和形成的过程提出了一些限制。对Orientale盆地内环和峰环盆地内环的几何趋势进行比较,通常与形成多环盆地的巨型阶地模型一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号