...
首页> 外文期刊>Journal of geophysical research. Earth Surface: JGR >Modeling glacier thickness distribution and bed topography over entire mountain ranges with glabtop: Application of a fast and robust approach
【24h】

Modeling glacier thickness distribution and bed topography over entire mountain ranges with glabtop: Application of a fast and robust approach

机译:使用glabtop建模整个山脉的冰川厚度分布和河床地形:快速而可靠的方法的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

[1] The combination of glacier outlines with digital elevation models (DEMs) opens new dimensions for research on climate change impacts over entire mountain chains. Of particular interest is the modeling of glacier thickness distribution, where several new approaches were proposed recently. The tool applied herein, GlabTop (Glacier bed Topography) is a fast and robust approach to model thickness distribution and bed topography for large glacier samples using a Geographic Information System (GIS). The method is based on an empirical relation between average basal shear stress and elevation range of individual glaciers, calibrated with geometric information from paleoglaciers, and validated with radio echo soundings on contemporary glaciers. It represents an alternative and independent test possibility for approaches based on mass-conservation and flow. As an example for using GlabTop in entire mountain ranges, we here present the modeled ice thickness distribution and bed topography for all Swiss glaciers along with a geomorphometric analysis of glacier characteristics and the overdeepenings found in the modeled glacier bed. These overdeepenings can be seen as potential sites for future lake formation and are thus highly relevant in connection with hydropower production and natural hazards. The thickest ice of the largest glaciers rests on weakly inclined bedrock at comparably low elevations, resulting in a limited potential for a terminus retreat to higher elevations. The calculated total glacier volume for all Swiss glaciers is 75 ± 22 km ~3 for 1973 and 65 ± 20 km ~3 in 1999. Considering an uncertainty range of ±30%, these results are in good agreement with estimates from other approaches.
机译:[1]冰川轮廓与数字高程模型(DEM)的结合为研究整个山链的气候变化影响开辟了新的维度。特别令人感兴趣的是冰川厚度分布的建模,最近提出了几种新方法。本文使用的工具GlabTop(冰川床地形)是使用地理信息系统(GIS)对大型冰川样本的厚度分布和床地形进行模型建模的快速而可靠的方法。该方法基于平均基础剪应力与单个冰川的仰角范围之间的经验关系,并用古冰川的几何信息进行了校准,并用当代冰川上的无线电回波测深进行了验证。对于基于质量守恒和流量的方法,它代表了另一种独立的测试可能性。作为在整个山脉中使用GlabTop的示例,我们在此介绍所有瑞士冰川的模拟冰厚分布和床形貌,以及对冰川特征和在模拟冰川床中发现的加深部分的地貌分析。这些过度加深可被视为未来湖泊形成的潜在场所,因此与水力发电和自然灾害有关。最大冰川的最厚冰层位于相对较低高度的弱倾斜基岩上,导致总站向后退至较高高度的潜力有限。所有瑞士冰川的计算出的冰川总体积在1973年为75±22 km〜3,在1999年为65±20 km〜3。考虑到±30%的不确定性范围,这些结果与其他方法的估计值高度吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号