首页> 外文期刊>Journal of geophysical research. Earth Surface: JGR >Glacial landscape evolution by subglacial quarrying: A multiscale computational approach
【24h】

Glacial landscape evolution by subglacial quarrying: A multiscale computational approach

机译:通过冰下采石进行冰川景观演化:一种多尺度计算方法

获取原文
获取原文并翻译 | 示例
           

摘要

Quarrying of bedrock is a primary agent of subglacial erosion. Although the mechanical theory behind the process has been studied for decades, it has proven difficult to formulate the governing principles so that large-scale landscape evolution models can be used to integrate erosion over time. The existing mechanical theory thus stands largely untested in its ability to explain postglacial topography. In this study we relate the physics of quarrying to long-term landscape evolution with a multiscale approach that connects meter-scale cavities to kilometer-scale glacial landscapes. By averaging the quarrying rate across many small-scale bedrock steps, we quantify how regional trends in basal sliding speed, effective pressure, and bed slope affect the rate of erosion. A sensitivity test indicates that a power law formulated in terms of these three variables provides an acceptable basis for quantifying regional-scale rates of quarrying. Our results highlight the strong influence of effective pressure, which intensifies quarrying by increasing the volume of the bed that is stressed by the ice and thereby the probability of rock failure. The resulting pressure dependency points to subglacial hydrology as a primary factor for influencing rates of quarrying and hence for shaping the bedrock topography under warm-based glaciers. When applied in a landscape evolution model, the erosion law for quarrying produces recognizable large-scale glacial landforms: U-shaped valleys, hanging valleys, and overdeepenings. The landforms produced are very similar to those predicted by more standard sliding-based erosion laws, but overall quarrying is more focused in valleys, and less effective at higher elevations.
机译:基岩的采石是冰下侵蚀的主要因素。尽管对该过程背后的力学理论进行了数十年的研究,但事实证明很难制定控制原理,以便可以使用大型景观演化模型来整合随时间推移的侵蚀。因此,现有的力学理论在解释冰河后地貌的能力方面未经测试。在这项研究中,我们采用多尺度方法将采石场的物理与长期景观演化联系起来,该方法将米尺度的空腔与千米尺度的冰川景观联系起来。通过平均许多小规模基岩台阶的采石率,我们可以量化基础滑动速度,有效压力和床坡度的区域趋势如何影响侵蚀速率。敏感性测试表明,根据这三个变量制定的幂定律为量化采石场的区域规模比率提供了可接受的基础。我们的结果突出了有效压力的强大影响,有效压力通过增加受冰应力作用的床体的体积以及岩石破裂的可能性而增加了采石量。由此产生的压力依赖性表明,冰川下的水文学是影响采石率的主要因素,因此是在温暖的冰川下塑造基岩地形的主要因素。在景观演化模型中应用时,采石场的侵蚀定律产生了可识别的大型冰川地貌:U形山谷,悬空山谷和深水沟。所产生的地貌与更标准的基于滑动的侵蚀定律所预测的地貌非常相似,但总体采石更多地集中在山谷中,而在较高的海拔地区则不太有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号