...
首页> 外文期刊>Journal of geophysical research. Earth Surface: JGR >Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection
【24h】

Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection

机译:基于放大方法的干雪中水和热汽相传递的宏观建模与相变:空气对流的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Peclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.
机译:在微观尺度上,即在孔隙尺度上,干雪的变质作用主要是由热量和水蒸气的传递以及冰-空气界面处的升华-沉积过程所驱动。迄今为止,已经以现象学的方式在雪堆模型中以宏观尺度即雪层尺度描述了这些现象。在这里,我们使用了一种按比例放大的方法,即多尺度膨胀的均质化,从孔隙尺度上的物理学原理上理论上得出了通过雪层传热和蒸发的宏观等效模型。所考虑的物理现象是稳态气流,通过传导和对流进行的热传递,通过扩散和对流进行的水蒸气传递以及相变(升华和沉积)。我们根据在孔隙尺度上考虑的气流强度,即根据孔隙的雷诺数和Peclet数的数量级,得出了三个不同的宏观模型:(A)纯扩散,(B)扩散和中等对流(达西定律)和(C)强对流(非线性流动)。模型的公式包括宏观性质(有效导热率,有效蒸气扩散系数和固有渗透率)的精确表达式,以及由孔隙尺度上的相变产生的热量和蒸气的宏观源项。这样的定义可用于根据雪的微结构的3-D描述来计算宏观的雪属性。最后,我们通过二维数值模拟说明了所提出的宏观模型的精度和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号