...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Dynamic fluid-kinetic (DyFK) modeling of auroral plasma outflow driven by soft electron precipitation and transverse ion heating
【24h】

Dynamic fluid-kinetic (DyFK) modeling of auroral plasma outflow driven by soft electron precipitation and transverse ion heating

机译:软电子沉淀和横向离子加热驱动的极光血浆流出的动态流动力学(DyFK)建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We apply a recently developed dynamic fluid-kinetic (DyFK) model to simulate and investigate the effects of soft auroral electron precipitation and perpendicular ion heating by waves on the plasma outflow along auroral field lines. The DyFK model is constructed by coupling a fluid ionospheric model for the region from 120 to 800 km to a semikinetic treatment for topside through several R_E altitude region. This approach, which is described in detail here, allows a partially self-consistent description of the plasma transport along highlatitude flux tubes where both low-altitude ionospheric heating and ionization production and loss as well as high-altitude energization and kinetic effects are incorporated and stressed. In the present work, we investigate the combined effects of the F region plasma production and electron heating by soft auroral electron precipitation and ion perpendicular wave heating at high altitudes, which produces ion conics. The auroral event simulated here involves 1.5 hours of moderate soft electron precipitation and relatively weak ion cyclotron waves along the magnetic field lines. The simulations reveal the F region electron heating and ionization by the soft electron precipitation, driving a topside O~+ upflow of up to 10~9 cm~(-2)s~(-1) below 1000 km within 30 min after the electron precipitation is turned on. The enhanced O~+ upflow plumes would be still gravitationally bound in the absence of further energization at higher altitudes. However, the synergistic effects of the increased upwelling ion supply driven by the precipitation and the wave-driven ion heating at higher altitudes combine to enhance O~+ bulk outflow by and order of magnitude above the baseline polar wind level to a net outflow flux of 10~8 ions cm~(-2)s~(-1) with a density of 10 ions cm~(-3) and bulk velocity of 12 km s~(-1) at 3 R_E altitude. Various O~+ conic velocity distributions develop within 10 min after transverse heating is initiated, and their characteristic energies saturate at approximately 10 eV for the peak waveinduced heating rates of 10~(-14) ergs s~(-1) at 2 R_E here. H~+ is also affected by the increases of O~+ due to H~+-O~+ collisional drag in the 1000-4000 km altitude transition region. H~+ flow is much less affected by the wave heating because of the faster transit times through the high-altitude wave heating zone and the lower H~+ bulk flow consists of a flux of 10~8 ions cm~(-2)s~(-1), a density of 4 ions cm~(-3), and a velocity of 30 km s~(-1) at 3 R_E altitude.
机译:我们应用最近开发的动态流体动力学(DyFK)模型来模拟和研究软的极光电子沉淀和垂直的离子加热波对沿极光场线的血浆流出的影响。 DyFK模型是通过将120至800 km区域的流体电离层模型与通过多个R_E高度区域的顶面半动力学处理耦合而构建的。此方法(在此进行了详细说明)允许沿着高纬度通量管对等离子体传输进行部分自洽的描述,其中结合了低纬度电离层加热和电离产生与损失以及高纬度通电和动力学效应,并且强调。在目前的工作中,我们研究了软区极电子沉淀和高海拔地区的离子垂直波加热对F区等离子体产生和电子加热的综合影响,这些离子在高海拔产生离子圆锥。这里模拟的极光事件涉及1.5小时的中度软电子沉淀和沿磁场线的相对较弱的离子回旋波。模拟显示了F区电子通过软电子沉淀而被加热和电离,在电子发射后30分钟内,顶侧O〜+向上流向1000 km以下高达10〜9 cm〜(-2)s〜(-1)降水开始了。在更高的高度没有进一步通电的情况下,增强的O〜+上升流羽流仍将受到重力束缚。然而,由降水驱动的上升流离子供应增加和在更高高度的波浪驱动离子加热产生的协同效应结合在一起,使O〜+总体流出量比基线极风水平高出一个数量级,达到了净流出量。在3 R_E高度下,其10〜8个离子cm〜(-2)s〜(-1)的密度为10个离子cm〜(-3),体积速度为12 km s〜(-1)。在开始横向加热后的10分钟内,各种O〜+圆锥速度分布逐渐形成,并且在2 R_E处,波的峰值加热速率为10〜(-14)ers s〜(-1),其特征能量在大约10 eV处饱和。 。在1000-4000 km高度过渡区域,由于H〜+ -O〜+碰撞阻力,O〜+的增加也会影响H〜+。 H〜+流量受波加热的影响较小,因为通过高海拔波加热区的转换时间更快,而较低的H〜+整体流量由10〜8个离子cm〜(-2)s的通量组成〜(-1),4个离子cm〜(-3)的密度和3 R_E高度下30 km s〜(-1)的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号