首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Physical properties of a coronal hole from a coronal diagnostic spectrometer, Mauna Loa Coronagraph, and LASCO observations during the Whole Sun Month
【24h】

Physical properties of a coronal hole from a coronal diagnostic spectrometer, Mauna Loa Coronagraph, and LASCO observations during the Whole Sun Month

机译:在整个太阳月期间,来自日冕诊断光谱仪,Mauna Loa日冕仪和LASCO观测的日冕孔的物理性质

获取原文
获取原文并翻译 | 示例
           

摘要

Until recently [Guhathakurta and Fisher, 1998], inference of electron density distribution in the solar corona was limited by the field of view of white-light coronagraphs (typically out to 6 R_s). Now, for the first time we have a series of white-light coronagraphs (SOHO/LASCO) whose combined field of view extends from 1.1-30 R_s. Quantitative information on electron density distribution of coronal hole and coronal plumes/rays are estimated by using white-light, polarized brightness (pB) observations from the SOHO/LASCO/C2 and C3 and HAO/Mauna Loa Mark III coronagraphs from 1.15 to 8.0 R_s. Morphological information on the boundary of the polar coronal hole and steamer interface is determined from the white-light observations in a manner similar to the Skylab polar coronal hole boundary estimate [Guhathakurta and Holzer, 1994]. The average coronal hole electron density in the region 1 - 1.15 R_s is estimated from the density-sensitive EUV line ratios of Si IX 350/342 A observed by the SOHO/coronal diagnostic spectrometer (CDS). We combine these numbers with the estimate from white-light (WL) observations to obtain a density profile form 1 to 8 R_s for the plumes and the polar coronal hole. We find that white light and spectral analysis produce consistent density information. Extrapolated densities inferred from SOHO observations are compared to Ulysses in situ observations of density. Like the density inferred from the Spartan 201-03 coronagraph, the current SOHO density profiles suggest that the acceleration of the fast solar wind takes place very close to the Sun, within 10-15 R_s. The density information is used to put constraints on solar wind flow velocities and effective temperatures. Finally, these results are compared to the recent analysis of the Spartan 201-03 white-light observations.
机译:直到最近[Guhathakurta and Fisher,1998],太阳电晕中电子密度分布的推断仍受白光日冕仪的视野限制(通常不超过6 R_s)。现在,我们第一次有了一系列白光日冕仪(SOHO / LASCO),其合并视场范围为1.1-30 R_s。通过使用白光,偏振亮度(pB)从SOHO / LASCO / C2和C3以及HAO / Mauna Loa Mark III日冕仪从1.15 Rs到8.0 R_s的观测,估算了关于冠孔和冠羽/射线的电子密度分布的定量信息。 。根据白光观测,以类似于Skylab极冠孔边界估计的方式确定极冠孔和汽船界面边界的形态信息[Guhathakurta和Holzer,1994]。根据SOHO /日冕诊断光谱仪(CDS)观察到的Si IX 350/342 A的密度敏感EUV线比率,可以估计区域1-1.15 R_s中的平均日冕空穴电子密度。我们将这些数字与白光(WL)观测值的估计值相结合,以获得羽状和极冠状孔的1至8 R_s的密度分布。我们发现白光和光谱分析产生一致的密度信息。从SOHO观测值推断出的外推密度与Ulysses密度的原位观测值进行比较。就像从Spartan 201-03日冕仪推断出的密度一样,当前的SOHO密度分布图表明,快速太阳风的加速非常接近太阳,发生在10-15 R_s之内。密度信息用于限制太阳风的流速和有效温度。最后,将这些结果与对Spartan 201-03白光观测的最新分析进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号