首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Channeled flow: Analytic solutions, laboratory experiments, and applications to lava flows
【24h】

Channeled flow: Analytic solutions, laboratory experiments, and applications to lava flows

机译:引导流:分析解决方案,实验室实验以及对熔岩流的应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Although channeled lava flows are common in basaltic volcanism, relationships between channel morphology, eruption and emplacement parameters, and lava properties are not well understood. Several models have commonly been used to constrain these relations, but they have not been well tested on natural or simulated lava flows over a wide range of parameter space. Here, we test the accuracy and assumptions of a moderately simple analytic rectangular channel solution by comparing the behavior of well-controlled laboratory polyethylene glycol (PEG) channeled flows to the analytic solution for isothermal, steady Newtonian flow in a rectangular channel with constant dimensions. This analytic solution agrees well with laboratory measurements. Volumetric effusion rates (Q; m(3) s(-1)) calculated from the analytical model using measured PEG flows as input yield ratios of Q(calculated)/Q(pumped) of similar to0.2 to 3.6, and flow rates calculated from a best fit surface velocity profile to measured velocities give more accurate ratios of similar to0.8 to 1.2. We find a very weak dependence of solution accuracy on slope, attributable to flow front effects within the laboratory flows. We subsequently apply the solution to several subaerial and submarine terrestrial flows as well as extraterrestrial channeled flows over a wide range of flow parameters. Viscosity ranges and flow rates obtained using measured channel dimensions and assumed lava properties are plausible. Interestingly, the resulting extraterrestrial estimates of viscosities and flow rates tend to fall closer to known terrestrial measurements and estimates of channel flow than to previous planetary estimates. We therefore suggest that the analytic Newtonian rectangular channel flow model is a more appropriate physical model for many channeled terrestrial and planetary flows than the Newtonian infinite sheet flow and approximation to Bingham channel flow widely used previously. [References: 55]
机译:尽管带通道的熔岩流在玄武质火山活动中很常见,但是通道形态,喷发和沉积参数以及熔岩特性之间的关系还没有得到很好的理解。通常使用几种模型来约束这些关系,但是尚未在广泛的参数空间中对自然或模拟熔岩流进行很好的测试。在这里,我们通过比较控制良好的实验室聚乙二醇(PEG)通道流动与恒定尺寸矩形通道中等温,稳定牛顿流的解析溶液的行为,来测试适度简单的矩形通道解析问题的准确性和假设。该分析解决方案与实验室测量非常吻合。使用测量的PEG流量作为分析(输入的Q(计算)/ Q(泵送)的产出比),从分析模型计算出的体积积水率(Q; m(3)s(-1))约为0.2至3.6从最佳拟合表面速度曲线到测得的速度计算得出的比值更精确,近似为0.8到1.2。我们发现溶液精度对斜率的依赖性很弱,这归因于实验室流量中的流量前沿效应。随后,我们将该解决方案应用于多种流动参数范围内的几种陆上和海底陆地流以及地外引导流。使用测得的通道尺寸和假定的熔岩特性获得的粘度范围和流速是合理的。有趣的是,由此产生的对粘度和流速的地外估计比以前的行星估计更倾向于更接近已知的地面测量和通道流量估计。因此,我们建议,与以前广泛使用的牛顿无限片流和近似宾汉河道流的近似值相比,解析牛顿矩形河道流模型对于许多通道的地面和行星流来说是更合适的物理模型。 [参考:55]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号