...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Kinetic structure of the post plasmoid plasma sheet during magnetotail reconnection
【24h】

Kinetic structure of the post plasmoid plasma sheet during magnetotail reconnection

机译:磁尾重连过程中等离子体后等离子体片的动力学结构

获取原文
获取原文并翻译 | 示例

摘要

Ion dynamics during magnetotail reconnection is studied by means of a two-dimensional, large-scale hybrid simulation (macroparticle ions, inertialess electron fluid). The initial setup is a realistic two-dimensional equilibrium with a normal magnetic field component through the current sheet and a Raring lobe field. Reconnection is initiated by a localized resistivity in the near-Earth region. As in MHD, a plasmoid develops and is ejected downtail. The ion kinetic structure in the post plasmoid plasma sheet is studied in detail. In a region of about 10 R-E from the neutral line the ions are demagnetized and are picked up by the electron fluid ejected from the X line. Although the magnetic field in this region is reminiscent of slow mode shocks, no shocks occur, and the structure can be described by a standing large-amplitude whistler. The Hall current leads to a cross-tail magnetic field up to 40% of the lobe field. This may have important; consequences for mapping of low-altitude features into the tail. Further away from the neutral line over a distance up to 30 R-E a thin current sheet develops in which the lobe ions perform quasi-adiabatic orbits. This current, sheet becomes instable and disrupts; the instability is driven by the free energy contained in the non-Maxwellian velocity distributions in the current sheet. In the region of current sheet, breakup the post plasmoid plasma sheet is hot and moves with a bulk speed close to the local Alfven speed. In order to delineate the acceleration and heating process, individual ions are followed during the simulation. There is Iio indication for slow mode shocks in the simulation system within the simulation time. This suggests that slow mode shocks are not to be expected in the geomagnetic tail within several tens of R-E from the X line. [References: 47]
机译:通过二维大规模混合模拟(宏观粒子离子,无惯性电子流体)研究磁尾重连期间的离子动力学。初始设置是一个现实的二维平衡,具有通过当前工作表的正常磁场分量和Raring波瓣场。重新连接是由近地区域的局部电阻率启动的。如在MHD中一样,浆体会发育并向尾巴中弹出。详细研究了等离子体后等离子体板中的离子动力学结构。在离中性线约10 R-E的区域中,离子被消磁并被从X线喷射的电子流体吸收。尽管此区域中的磁场使人联想到慢速模式电击,但没有电击发生,并且可以通过站立的大振幅哨笛来描述其结构。霍尔电流导致高达尾波磁场40%的交叉尾磁场。这可能很重要;低海拔地图项映射到尾部的后果。距离中性线更远,最远达到30 R-E,形成薄电流片,在该薄电流片中,叶离子执行准绝热轨道。这种电流表变得不稳定并中断;不稳定性是由当前工作表中非麦克斯韦速度分布中包含的自由能驱动的。在当前薄片的区域中,等离子体后等离子体薄片破裂,并以接近局部Alfven速度的整体速度移动。为了描述加速和加热过程,在模拟过程中会跟踪各个离子。有迹象表明在仿真时间内仿真系统中会出现慢速模式电击。这表明在距X线数十R-E内的地磁尾部中,预计不会出现慢速模式冲击。 [参考:47]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号