首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Outgoing longwave radiation and cloud radiative forcing of the Tibetan Plateau
【24h】

Outgoing longwave radiation and cloud radiative forcing of the Tibetan Plateau

机译:青藏高原的长波辐射和云辐射强迫

获取原文
获取原文并翻译 | 示例
       

摘要

In order to study the energy balance and the cloud radiative forcing (CRF) of the Tibetan Plateau in detail, 2 years of GMS5 satellite data are employed to analyze the monthly mean outgoing longwave radiation (OLR) and CRE It should be noted that the temporal resolution of GMS5 data is 1 hour, so the data can be used to study the diurnal variations of OLR. First, a method is presented to retrieve the OLR from split-window channels (10.5-11.5 and 11.5-12.5 mu m) and the water vapor channel (6.5-7.0 mu m) of GMS5. The method applies the discrete ordinates radiative transfer (DISORT) model together with the radiosonde profiles of the Tibetan Plateau to simulate radiances and fluxes of the three channels. A regression relationship is then developed to calculate the OLR from the observations of the three channels. Since the Tibetan Plateau is located nearly out of the effective observational range of the GMS5 satellite, the regression results of GMS5's split-window channels and water vapor channel are corrected by using simultaneously retrieved results from TIROS Operational Vertical Sounder (TOVS). The correlation coefficient of GMS5 and TOVS results is 0.8510, which is targe enough for 1% significant level. The OLR distributions are calculated for the Tibetan Plateau using 2 years of GMS5 data and the regression and correction methods. The average of the OLR images for the same month and same time gives the monthly mean OLR distribution for each hour. The 24-hour OLR distributions of the same month are then averaged to yield the monthly mean OLR distribution for that month. Then our monthly mean OLR distributions are compared with the Clouds and the Earth's Radiant Energy System (CERES) results, and they are generally in good agreement with differences of <10% for January and 5% for July. Analyzing the monthly mean OLR distributions for different seasons, we find that during the winter season the OLR distribution exhibits low values over the Tibetan Plateau but high values for areas off the Tibetan Plateau. During the summer season the OLR of the southern part is smaller than that of the northern part. Studying the monthly mean diurnal variations of OLR, we Find that the diurnal variations of OLR are affected by diurnal cycles of cloud quantity and surface temperature. The relief of the Tibetan Plateau is very high, and the radiative healing is intense after sunrise. The OLR is greatly influenced by the surface and reaches a maximum value soon after sunrise, but the time the minimum OLR emerges varies. After the OLR distributions of the Tibetan Plateau are obtained, the role of clouds in the climate system is also studied. In order to calculate the CRF the international Satellite Cloud Climatology Project (ISCCP) cloud detection algorithm is used to detect the clear pixels for each image. The clear-sky components of OLR and albedo for different months and hours are then derived and averaged over a month to obtain the monthly mean clear-sky OLR and albedo for each hour. Finally, data are averaged over 24 hours to give the monthly mean shortwave CRF (SWCRF), longwave CRF (LWCRF), and CRE The results show that the CRF over the Tibetan Plateau is negative most of the time. This means the CRF is dominated by cooling effects, and the distribution pattern is mainly determined by the SWCRF component. While the CRFs to the south and the north of the Tibetan Plateau are different, there are obvious annual variations with heating effects in the summer-autumn season and cooling effects in the winter-spring season. [References: 18]
机译:为了详细研究青藏高原的能量平衡和云辐射强迫(CRF),采用2年的GMS5卫星数据来分析月平均外向长波辐射(OLR)和CRE。 GMS5数据的分辨率为1小时,因此该数据可用于研究OLR的日变化。首先,提出了一种从GMS5的分割窗口通道(10.5-11.5和11.5-12.5μm)和水蒸气通道(6.5-7.0μm)中检索OLR的方法。该方法将离散坐标辐射传输(DISORT)模型与青藏高原的探空仪剖面图一起使用,以模拟三个通道的辐射和通量。然后建立回归关系,从三个通道的观测值计算OLR。由于青藏高原的位置几乎不在GMS5卫星的有效观测范围之内,因此可以使用TIROS操作垂直测深仪(TOVS)同时获取的结果来校正GMS5的分割窗口通道和水汽通道的回归结果。 GMS5和TOVS结果的相关系数为0.8510,足以确定1%的显着水平。使用2年的GMS5数据以及回归和校正方法来计算青藏高原的OLR分布。同一个月和同一时间的OLR图像的平均值给出了每个小时的每月平均OLR分布。然后将同月的24小时OLR分布平均,以得出该月的月平均OLR分布。然后将我们的月平均OLR分布与云和地球辐射能系统(CERES)的结果进行比较,它们通常具有很好的一致性,其中1月的差异小于10%,7月的差异小于5%。通过分析不同季节的月平均OLR分布,我们发现在冬季,OLR分布在青藏高原上表现出较低的值,而在青藏高原以外的地区表现出较高的值。在夏季,南部的OLR小于北部的OLR。研究OLR的月平均日变化,我们发现OLR的日变化受云量和地表温度的日变化的影响。青藏高原的浮雕非常高,日出后辐射恢复很强烈。 OLR受表面的影响很大,并且在日出后立即达到最大值,但是最小OLR出现的时间会有所不同。获得青藏高原的OLR分布后,还研究了云在气候系统中的作用。为了计算CRF,国际卫星云气候计划(ISCCP)云检测算法用于检测每个图像的清晰像素。然后导出不同月份和小时的OLR和反照率的晴空分量,并在一个月内取平均值,以获得每个小时的月平均晴空OLR和反照率。最后,对24小时内的数据进行平均,得出月平均短波CRF(SWCRF),长波CRF(LWCRF)和CRE。结果表明,青藏高原的CRF在大多数情况下为负值。这意味着CRF主要受冷却效应的影响,而分布模式主要由SWCRF组件决定。尽管青藏高原南部和北部的CRF不同,但夏秋季节的加热效应和冬春季节的冷却效应存在明显的年度变化。 [参考:18]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号